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Abstract. The most general possible central extensions of two whole families of Lie algebras,
which can be obtained by contracting the special pseudo-unitary algebrassu(p, q) of the Cartan
seriesAl and the pseudo-unitary algebrasu(p, q), are completely determined and classified for
arbitraryp andq. In addition to thesu(p, q) andu(p, q) algebras, whose second cohomology
group is well known to be trivial, each family includes many non-semisimple algebras; their
central extensions, which are explicitly given, can be classified into three types as far as their
properties under contraction are involved. A closed expression for the dimension of the second
cohomology group of any member of these families of algebras is given.

1. Introduction

This paper investigates the Lie algebra cohomology of the unitary Cayley–Klein (CK)
families of Lie algebras in any dimension. These families, also called ‘quasi-unitary’
algebras, include both the special (pseudo-)unitarysu(p, q) and (pseudo-)unitaryu(p, q)
algebras—which have only trivial central extensions—, as well as many other obtained
from these by a sequence of contractions, which are no longer semisimple and may have
non-trivial central extensions.

The paper can be considered as a further step in a series of studies on the CK families of
Lie algebras. These have both mathematical interest and physical relevance. The families of
CK algebras provide a frame to describe the behaviour of mathematical properties of algebras
under contraction; in physical terms this is related to some kind of approximation. The
central extensions for the family of quasi-orthogonal algebras, also in the general situation
and for any dimension, have been determined in a previous paper [1]. We refer to this work
for references and for physical motivations; we simply remark here that there are three main
reasons behind the interest in the second cohomology groups for Lie algebras. First, in any
quantum theory the relevant representations of any symmetry group are projective instead
of linear ones; second, homogeneous symplectic manifolds under a group appear as orbits
of the co-adjoint representation of either the group itself or of a central extension; and third,
quasi-invariant Lagrangians are also directly linked to the central extensions of the group;
these can also be related to Wess–Zumino terms. In addition to the references in [1], we
may add that Wess–Zumino–Witten models leading to central extensions have also been
studied (see, e.g., [2, 3] and references therein).
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The knowledge of the second cohomology group for a Lie algebra relies on the general
solution of a set of linear equations, yet some general results allow us to bypass the
calculations in special cases. For instance, the second cohomology group is trivial for
semisimple Lie algebras. However, once a contraction is made, the semisimple character
disappears, and the contracted algebra might have non-trivial central extensions. Instead
of finding the general solution for the extension equations on a case-by-case basis, our
approach is to do these calculations for a whole family including a large number of algebras
simultaneously. This program has been developed for the quasi-orthogonal algebras, and
here we discuss the ‘next’ quasi-unitary case. There are two main advantages in this
approach. First, it allows us to record, in a form easily retrievable, a large number of
results which may be needed in applications, both in mathematics and in physics. This
avoids at once and for all the case-by-case type computations of the central extensions of
algebras included in the unitary families. Second, it sheds some further light on the inter-
relations between cohomology and contractions, by discussing in particular examples how
and when a contraction increases the cohomology of the algebra: central extensions can be
classed into three types, with different behaviour under contraction.

Section 2 is devoted to the description of the two families of unitary CK algebras. We
show how to obtain these as graded contractions of the compact algebrassu(N + 1) and
u(N+1), and we provide some details on their structure. It should be remarked that the CK
unitary algebras are associated to the complex hermitian spaces with metrics of different
signatures and to their contractions. In section 3 the general solution to the central extension
problem for these algebras is given; this includes the completely explicit description of all
possible central extensions and the discussion of their triviality. A closed formula for the
dimension of the second cohomology group is also obtained. Computational details on the
procedure to solve the central extension problem are given in the appendix. The results are
illustrated in section 4 for the lowest-dimensional examples. Finally, some remarks close
the paper.

2. The CK families of quasi-unitary algebras

The family of special quasi-unitary algebras, which involves the simple Lie algebras
su(p, q), as well as many non-simple algebras obtained byİnönü and Wigner [4] contraction
from su(p, q) can be easily described in terms of graded contraction theory [5, 6], taking
the compact real formsu(N +1) of the simple algebras in the seriesAN as a starting point.
As is well known, the special unitary algebra can be realized by complex anti-Hermitian
and traceless matrices, and is the quotient of the algebra of all complex anti-Hermitian
matrices by its centre (generated by the pure imaginary multiples of the identity). It will
be convenient to consider the family of quasi-unitary algebras altogether; these can be
similarly described in terms of graded contractions ofu(N + 1), and will include algebras
obtained fromu(p, q) by İnönü–Wigner contractions. Let us consider the (fundamental)
matrix representation of the algebrassu(N + 1) and u(N + 1), as given by the complex
matricesJab, Mab, Bl andJab, Mab, Bl , I :

Jab = −eab + eba Mab = i(eab + eba) Bl = i(el−1,l−1− ell)

I = i
N∑
a=0

eaa (2.1)

wherea < b, a, b = 0, . . . , N , l = 1, . . . , N , and whereeab means the(N + 1)× (N + 1)
matrix with a single 1 entry in rowa and columnb. The commutation relations involved
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in either of these algebras are given by

[Jab, Jac] = Jbc [Jab, Jbc] = −Jac [Jac, Jbc] = Jab
[Mab,Mac] = Jbc [Mab,Mbc] = Jac [Mac,Mbc] = Jab
[Jab,Mac] = Mbc [Jab,Mbc] = −Mac [Jac,Mbc] = −Mab

[Mab, Jac] = −Mbc [Mab, Jbc] = −Mac [Mac, Jbc] = Mab

[Jab, Jde] = 0 [Mab,Mde] = 0 [Jab,Mde] = 0

[Jab, Bl ] = (δa,l−1− δb,l−1+ δbl − δal)Mab

[Mab, Bl ] = −(δa,l−1− δb,l−1+ δbl − δal)Jab (2.2)

[Jab,Mab] = −2
b∑

s=a+1

Bs [Bk, Bl ] = 0 (2.3)

[Jab, I ] = 0 [Mab, I ] = 0 [Bl, I ] = 0. (2.4)

The algebrasu(N + 1) has a grading by a groupZ⊗N2 related to a set ofN commuting
involutions in the subalgebraso(N + 1) generated byJab [7, 8]. If S denotes any subset of
the set of indices{0, 1, . . . , N}, andχS(a) denotes the characteristic function overS, then
each of the linear mappings given by

SSJab = (−1)χS (a)+χS (b)Jab SSMab = (−1)χS (a)+χS (b)Mab SSBl = Bl (2.5)

is an involutive automorphism of the algebrasu(N +1); by considering all possible subsets
of indices we get 2N different automorphisms defining aZ⊗N2 grading for this algebra.
The corresponding graded contractions ofsu(N + 1) constitute a large set of Lie algebras,
but there exists a particular subset or family of these graded contractions, nearer to the
simple ones, which essentially preserves the properties associated to simplicity, and which
belong to the so-termed [9, 10] ‘quasi-simple’ algebras. This family, to be defined later,
encompasses the special pseudo-unitary algebras (in theAN Cartan series) as well as their
nearest non-simple contractions. By taking the generatorI as invariant under all involutions,
this grading can be extended to the algebrau(N + 1), whose graded contractions include
the pseudo-unitary algebras as well as many non-semisimple algebras; again a particular
family of these graded contractions, to be introduced later, preserves properties associated
to semi-simplicity. Collectively, all these algebras (special or not) are calledquasi-unitary;
these are also called Cayley–Klein algebras of unitary type, or unitary CK algebras, since
they are exactly those algebras behind the geometries of a complex Hermitian space with a
projective metric in the CK sense [10]. Another view to these algebras is given in [11].

The overall details on the structure of this family are similar to the orthogonal case. The
set of unitary CK algebras is parametrized byN real coefficientsωa (a = 1, . . . , N), whose
values codify in a convenient way the pertinent information on the Lie algebra structure
[12, 13]. In terms of theN(N + 1)/2 two-index coefficientsωab defined by

ωab := ωa+1ωa+2 . . . ωb a, b = 0, 1, . . . , N, a < b, ωaa := 1 (2.6)

which verify

ωac = ωabωbc a 6 b 6 c ωa = ωa−1a a = 1, . . . , N (2.7)

the algebras to be denotedsuω(N + 1) anduω(N + 1), ω ≡ (ω1, . . . , ωN), of dimensions
(N +1)2−1 and(N +1)2, are generated byJab, Mab, Bl andJab,Mab, Bl, I (a < b), with
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commutators

[Jab, Jac] = ωabJbc [Jab, Jbc] = −Jac [Jac, Jbc] = ωbcJab
[Mab,Mac] = ωabJbc [Mab,Mbc] = Jac [Mac,Mbc] = ωbcJab
[Jab,Mac] = ωabMbc [Jab,Mbc] = −Mac [Jac,Mbc] = −ωbcMab

[Mab, Jac] = −ωabMbc [Mab, Jbc] = −Mac [Mac, Jbc] = ωbcMab

[Jab, Jde] = 0 [Mab,Mde] = 0 [Jab,Mde] = 0
[Jab, Bl ] = (δa,l−1− δb,l−1+ δbl − δal)Mab

[Mab, Bl ] = −(δa,l−1− δb,l−1+ δbl − δal)Jab (2.8)

[Jab,Mab] = −2ωab
b∑

s=a+1

Bs [Bk, Bl ] = 0 (2.9)

[Jab, I ] = 0 [Mab, I ] = 0 [Bl, I ] = 0 (2.10)

wherea, b, c, d, e = 0, . . . , N andk, l = 1, . . . , N ; we assumea < b < c for each set of
three indices{a, b, c}, anda < b, d < e for each set of four indices{a, b, d, e} which are
also assumed to bedifferent.

2.1. The unitary CK groups

The connection with groups of isometries of a Hermitian metric is as follows: for a
generic choice, withall ωa 6= 0, let us consider the spaceCN+1 endowed with a Hermitian
(sesqui)linear form〈.|.〉ω : CN+1× CN+1→ C associated to the matrix

Iω = diag(1, ω01, ω02, . . . , ω0N) = diag(1, ω1, ω1ω2, . . . , ω1 . . . ωN); (2.11)

this is, for any pair of vectorsa, b ∈ CN+1,

〈a|b〉ω := ā0b0+ ā1ω1b
1+ ā2ω1ω2b

2+ · · · =
N∑
i=0

āiω0ib
i . (2.12)

Let us define the groupUω1,...,ωN (N + 1) ≡ Uω(N + 1) as the group of linear isometries of
the Hermitian metric (2.11). The isometry condition

〈Ua|Ub〉ω = 〈a|b〉ω ∀a, b ∈ CN+1 (2.13)

implies for the matrixU ∈ Uω(N + 1) the condition

U †IωU = Iω ∀U ∈ Uω(N + 1). (2.14)

For the corresponding Lie algebra the above relation leads to

X†Iω + IωX = 0 ∀X ∈ uω(N + 1). (2.15)

This Lie algebra is generated by the complex matrices (cf (2.1))

Jab = −ωabeab + eba Mab = i(ωabeab + eba) Bl = i(el−1,l−1− ell)

I = i
N∑
a=0

eaa (2.16)

with a < b, a, b = 0, . . . , N , l = 1, . . . , N .
The groupSUω1,...,ωN (N + 1) ≡ SUω(N + 1) is defined similarly by adding the

unimodularity condition det(U) = 1; this leads for the Lie algebra to the condition
trace(X) = 0, so the algebrasuω(N + 1) is generated byJab,Mab, Bl alone.
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The action of the groupsUω(N +1) andSUω(N +1) in CN+1 is not transitive, and the
‘sphere’ with equation

〈x|x〉ω :=
N∑
i=0

x̄iω0ix
i = 1 (2.17)

is stable. For the action ofSUω(N + 1), the isotropy subgroup of a reference point in
this sphere, say(1, 0, . . . ,0), is easily shown to be isomorphic toSUω2,ω3,...,ωN (N), and the
isotropy subgroup of theray of a reference point isUω2,ω3,...,ωN (N), locally isomorphic to
U(1)⊗ SUω2,ω3,...,ωN (N).

When the constantsωa are allowed to vanish, the set of isometries of the Hermitian
metric (2.11) is larger than the group generated by the matricesJab,Mab, Bl, I . In this
case, there are additional geometric structures inCN+1 (related to the existence of additional
invariant foliations similar to the one implied by (2.17)), and the proper definition of the
automorphism group of these structures leads again to the group generated by the matrix Lie
algebra (2.16) with the commutation relations (2.8)–(2.10). These matrix realizations can
be considered as the fundamental representation of the unitary CK Lie algebrassuω(N +1)
anduω(N + 1).

The quotient spacesSUω1,ω2,ω3,...,ωN (N + 1)/(U(1)⊗ SUω2,ω3,...,ωN (N)) are a family of
Hermitian spaces which includes examples with non-definite and/or degenerate Hermitian
metrics; the CK scheme provides a common frame to discuss them all jointly. The most
familiar corresponds toω2 = ω3 = · · · = ωN = 1, and depends on a single parameter
ω1 = K; whenK > 0 orK < 0 these are the usual elliptic or hyperbolic complex Hermitian
spaces of (holomorphic constant) curvatureK; whenω1 = 0 we get the ‘Euclidean’ flat
Hermitian space (finite-dimensional Hilbert space).

Since each coefficientωa can be positive, negative or zero, each unitary CK family is
comprised of 3N Lie algebras although some of them may be isomorphic. For instance,
the map

Jab → J ′ab = −JN−b,N−a Mab → M ′ab = −MN−b,N−a Bl → B ′l = BN+1−l
(2.18)

provides an isomorphism

suω1,ω2,...,ωN−1,ωN (N + 1) ' suωN ,ωN−1,...,ω2,ω1(N + 1). (2.19)

2.2. Structure of the unitary CK algebras

The unitary CK algebrassuω(N + 1) contain many subalgebras isomorphic to algebras in
both familiessuω(M + 1) anduω(M + 1), M < N . To best describe this, we introduce a
new set of Cartan subalgebra generators forsuω(N + 1), Ga (a = 1, . . . , N), defined by

Ga := 1

a
(B1+ 2B2+ · · · + (a − 1)Ba−1)+ Ba + 1

N + 1− a ((N − a)Ba+1

+(N − a − 1)Ba+2+ · · · + BN). (2.20)

In the matrix realization (2.16)Ga is given by

Ga = i

(
1

a

( a−1∑
s=0

ess

)
− 1

N + 1− a
( N∑
s=a

ess

))
(2.21)

so eachGa appears as a direct sum of two blocks, each proportional with a pure imaginary
coefficient to the identity matrix.
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Denoting byXij the pair of generators{Jij ,Mij }, we can check that the set〈Xij , i, j =
0, 1, . . . , a − 1;Bl, l = 1, . . . , a − 1〉 closes a Lie subalgebrasuω1,...,ωa−1(a). Furthermore,
Ga commutes with all the generators in this subalgebra, so that the former generators plus
aGa close an algebra isomorphic touω1,...,ωa−1(a).

Similarly, the set〈Xij , i, j = a, a+1, . . . , N; Bl, l = a+1, . . . , N〉 closes the special
unitary CK Lie algebrasuωa+1,...,ωN (N + 1− a), and by adding−(N + 1− a)Ga we get an
algebra isomorphic touωa+1,...,ωN (N + 1− a).

This structure can be visualized by arranging the basis generators as in figure 1. The
special unitary subalgebrassuω1,...,ωa−1(a) and suωa+1,...,ωN (N + 1− a) correspond, in this
order, to the two triangles to the left and below the rectangle, both excluding the generator
Ga. The unitary subalgebrasuω1,...,ωa−1(a) and uωa+1,...,ωN (N + 1− a) correspond, in this
order, to the two triangles to the left and below the rectangle, both including the generator
Ga. This generatorGa closes au(1) subalgebra.

X01 X02 . . . X0a−1 X0a X0a+1 . . . . . . X0N

B1 X12 . . . X1a−1 X1a X1a+1 . . . . . . X1N

B2
. . .

...
...

...
...

Xa−2a−1 Xa−2a Xa−2a+1 . . . . . . Xa−2N

Ba−1 Xa−1a Xa−1a+1 . . . . . . Xa−1N

Ga Xa a+1 . . . . . . XaN

Ba+1
. . .

...

XN−2N−1 XN−2N

BN−1 XN−1N

BN

Figure 1. Generators of the (special) unitary CK algebras.

We sum up the details relative to the structure of the special unitary CK algebras in two
statements.
• When all ωa are different from zero,suω(N + 1) is a pseudo-unitary simple Lie

algebrasu(p, q) in the Cartan seriesAN (p andq are the number of positive and negative
signs in the diagonal of the metric matrix (2.11),p + q = N + 1).
• If a coefficientωa vanishes, the CK algebra is a non-simple Lie algebra which has a

semidirect structure

suω1,...,ωa−1,ωa=0,ωa+1,...,ωN (N + 1)

≡ t � (suω1,...,ωa−1(a)⊕ u(1)⊕ suωa+1,...,ωN (N + 1− a)) (2.22)

where the subalgebras appearing in (2.22) are generated by

t = 〈Xij , i = 0, 1, . . . , a − 1, j = a, a + 1, . . . , N〉
suω1,...,ωa−1(a) = 〈Xij , i, j = 0, 1, . . . , a − 1; Bl, l = 1, . . . , a − 1〉
u(1) = 〈Ga〉
suωa+1,...,ωN (N + 1− a) = 〈Xij , i, j = a, a + 1, . . . , N;Bl, l = a + 1, . . . , N〉. (2.23)

We note thatt is an Abelian subalgebra of dimension 2a(N + 1 − a). In terms of the
triangular arrangement of generators (figure 1),t is spanned by the generators inside the
rectangle; we remark that these generators do not close a subalgebra whenωa 6= 0. The
three remaining sets are always subalgebras, no matter whether or notωa = 0.
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For the particular caseω1 = 0 (or, mutatis mutandis, ωN = 0) the contracted algebra is
a quasi-unitary inhomogeneous algebra,

su0,ω2,...,ωN (N + 1) ≡ t2N � uω2,...,ωN (N).

The subindex 2N in t denotes the real dimension oft ≡ CN which can be identified
with the spaceSU0,ω2,ω3,...,ωN (N + 1)/Uω2,...,ωN (N), with the natural action ofUω2,...,ωN (N)

(locally isomorphic toU(1)⊗ SUω2,ω3,...,ωN (N)) overCN . This direct product appeared as
the isotropy subalgebra of a ray for the natural action ofSU0,ω2,ω3,...,ωN (N + 1) on CN+1

discussed after (2.17). In the case whereω2, ω3, . . . , ωN are all different from zero, the
algebra is an ordinary inhomogeneous pseudo-unitary (not special) algebra

t2N � uω2,...,ωN (N) ≡ iu(p, q) p + q = N
and in this caset2N can be identified to theN -dimensional flat complex Hermitian space
with signaturep, q determined as the number of positive and negative terms in the sequence
(1, ω2, ω2ω3, . . . , ω2 . . . ωN).

When several coefficientsωa are equal to zero the algebrasuω1,ω2,...,ωN (N + 1) has
simultaneously several such decompositions. The more contracted case corresponds to
taking allωa equal to zero; this gives rise to the special unitary flag algebra.

3. Central extensions

Now we proceed to compute in a unified way all the central extensions for the two unitary
families of CK algebras, for arbitrary choices of the constantsωa and in any dimension.
Let G be an arbitraryr-dimensional Lie algebra with generators{X1, . . . , Xr} and structure
constantsCkij . A central extensionG of the algebraG by the one-dimensional algebra
generated by4 will have (r + 1) generators(Xi,4) with commutation relations given by

[Xi,Xj ] =
r∑
k=1

CkijXk + ξij4 [4,Xi ] = 0. (3.1)

The extension coefficients or central chargesξij must be antisymmetric in the indicesi, j ,
ξji = −ξij and must fulfil the following conditions coming from the Jacobi identities in the
extended Lie algebra:

r∑
k=1

(Ckij ξkl + Ckjlξki + Ckliξkj ) = 0. (3.2)

These extension coefficients are the coordinates(ξ(Xi,Xj ) = ξij ) of the antisymmetric
two-tensorξ which is the two-cocycle of the specific extension being considered, and (3.2)
is the two-cocycle condition for the Lie algebra cohomology.

Let us consider the ‘abstract’ extended Lie algebraG with the Lie brackets (3.1) and
let us perform a change of generators:

Xi → X′i = Xi + µi4 (3.3)

whereµi are arbitrary real numbers. The commutation rules for the generators{X′i} become

[X′i , X
′
j ] =

r∑
k=1

CkijX
′
k +

(
ξij −

r∑
k=1

Ckijµk

)
4. (3.4)

Thus, the general expression for the two-coboundaryδµ generated byµ is

δµ(Xi,Xj ) =
r∑
k=1

Ckijµk. (3.5)
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Two two-cocycles differing by a two-coboundary lead to equivalent extensions; the classes
of equivalence of non-trivial two-cocycles associated with the tensorsξ determine the second
cohomology groupH 2(G,R).

3.1. The general solution to the extension problem for the unitary CK algebras

In a previous paper [1] we have given the general solution to the extension equations for
the case of the orthogonal CK algebras. The same approach can be used for the family
of quasi-unitary algebras. However, and in order not to burden the exposition, the main
details on the procedure have been placed in the appendix. The results obtained there give
the general solution to the problem of finding the central extensions for the unitary CK
algebras. They are summed up in the following.

Theorem 3.1. The most general central extensionsuω(N +1) of any algebra in the family
of special unitary CK algebrassuω(N+1) is determined by the followingbasiccoefficients.

Type I.N(N + 1)/2 basic extension coefficientsηab andN(N + 1)/2 basic extension
coefficientsτab (a < b, a, b = 0, 1, . . . , N). These coefficients are not subjected to any
further relationship.

Type II.N basic extension coefficientsαk (k = 1, . . . , N), not subjected to any further
relationship.

Type III. N(N − 1)/2 basic extension coefficientsβkl (k < l, k, l = 1, . . . , N) which
must satisfy the conditions

ωkβkl = 0 ωlβkl = 0. (3.6)

Theorem 3.2. The most general central extensionuω(N + 1) of any algebra in the unitary
CK family uω(N+1) is determined by the basic extension coefficients given in theorem 3.1,
and by an additional set of coefficients.

Type III.N basic extension coefficientsγk (k = 1, . . . , N), subjected to the relation

ωkγk = 0. (3.7)

For any given choice of the constantsωa, these basic extension coefficients determine
two-cocycles for the algebrassuω(N +1) anduω(N +1). The Lie brackets of the extended
algebrassuω(N + 1) anduω(N + 1) are given by

[Jab, Jac] = ωab(Jbc + ηbc4) [Mab,Mac] = ωab(Jbc + ηbc4)
[Jab, Jbc] = −(Jac + ηac4) [Mab,Mbc] = Jac + ηac4
[Jac, Jbc] = ωbc(Jab + ηab4) [Mac,Mbc] = ωbc(Jab + ηab4)
[Jab, Jmn] = 0 [Mab,Mmn] = 0

[Jab,Mac] = ωab(Mbc + τbc4) [Mab, Jac] = −ωab(Mbc + τbc4)
[Jab,Mbc] = −(Mac + τac4) [Mab, Jbc] = −(Mac + τac4)
[Jac,Mbc] = −ωbc(Mab + τab4) [Mac, Jbc] = ωbc(Mab + τab4)
[Jab,Mmn] = 0 [Mab, Jmn] = 0

[Jab, Bl ] = (δa,l−1− δb,l−1+ δbl − δal)(Mab + τab4)
[Mab, Bl ] = −(δa,l−1− δb,l−1+ δbl − δal)(Jab + ηab4) (3.8)

[Jab,Mab] = −2ωab
b∑

s=a+1

Bs +
b∑

s=a+1

ωa s−1ωsbαs4 [Bk, Bl ] = βkl4

[Jab, I ] = 0 [Mab, I ] = 0 [Bk, I ] = γk4 (3.9)
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wherea < b < c, k < l, m < n anda, b,m, n are all different.

The complete expression for the two-cocycles forsuω(N + 1) and uω(N + 1) can
be read directly from these commutators; for future convenience, we collect some
expressions relating the basic extension coefficients with particular values of the two-
cocycles determining the extensions (however, and as can be seen in (3.8), most of these
basic coefficients appear related to the values of the cocycle in several ways)

ηac = −ξ(Jab, Jbc) τac = −ξ(Jab,Mbc)

αk = ξ(Jk−1k,Mk−1k) βkl = ξ(Bk, Bl) (3.10)

γk = ξ(Bk, I ). (3.11)

3.2. Equivalence of extensions

According to the general discussion in the beginning of this section, we now look for the
more general coboundary forsuω(N + 1) or uω(N + 1). We write a change of basis (see
(3.3)) for the generators as

Jab → J ′ab = Jab + σab4 Mab → M ′ab = Mab + ρab4
Bk → B ′k = Bk + υk4 (3.12)

I → I + ς4 (3.13)

whereσab, ρab, υk and ς are the values ofµ on the generatorsJab, Mab, Bk and I . By
using (3.5) and the structure constants of the algebrassuω(N + 1) or uω(N + 1) read from
(2.8)–(2.10), we find for the associated coboundariesδµ,

δµ(Jab, Jbc) = −σac δµ(Jab,Mbc) = −ρac
δµ(Jk−1k,Mk−1k) = −2ωkυk δµ(Bk, Bl) = 0 (3.14)

δµ(Bk, I ) = 0. (3.15)

We shall not need the remaining values of the coboundariesδµ for suω(N + 1) or
uω(N + 1); eachδµ being a two-cocycle, it must necessarily appear as a particular case
of the most general two-cocycles which are completely determined by the basic extension
coefficients (3.10).

The question of whether a general two-cocycle for a CK algebra in theorem 3.1 defines
a trivial extension amounts to checking whether it is a coboundary, which will allow the
elimination of the central4 term from (3.8). This may depend on the values of the constants
ωa. In fact, the three types of extensions behave in three different ways, which mimics the
pattern found in the orthogonal case [1].
• Type I extensions can be performed for all unitary CK algebras, since there is noωa-

dependent restriction to the basic type I coefficientsτab, ηab. However, as seen in (3.14),
these extensions arealwaystrivial. A considerable simplification of all expressions can be
gained if these trivial extensions are simply discarded, as we shall do from now on. Hence,
for the extendedalgebra, the whole block of commutation relations in (2.8) will hold and
only those commutators in (2.9) or (2.10) may change.
• Type II extensions also appear in all unitary CK algebras, as there is noωa-dependent

restriction to the basic type II coefficientsαk. The triviality of these extensions isωa-
dependent, and (3.14) shows that the extension determined by the coefficientαk is non-trivial
if ωk = 0, and trivial otherwise. It is within this type of extension that apseudo-extension
(trivial extension by a two-coboundary) may become a non-trivial extension by contraction
[14, 15].
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• Type III extensions behave in a completely different way. Due to the additional
conditions (3.6) and (3.7) that type III extension coefficients must fulfil, some of them
might be necessarily equal to zero. Hence, these extensions do not exist for all unitary CK
algebras. However, those allowed (oneβkl for each pair of vanishing constantsωk = ωl = 0
and for the (non-special) unitary case one additionalγk for each vanishing constantωk = 0)
are always non-trivial, as the last equations in (3.14) and (3.15) show. Therefore, type III
extensions do not appear through the pseudo-extension mechanism.

3.3. The second cohomology groups of the unitary CK algebras

If we disregard type I extensions, which are trivial for all members in the two CK families
of unitary algebras, the above results can be summarized in the following.

Theorem 3.3. The commutation relations of any central extensionsuω(N+1) of the special
unitary CK algebrasuω(N+1) can be written as the commutation relations in (2.8), together
with

[Jab,Mab] = −2ωab
b∑

s=a+1

Bs +
b∑

s=a+1

ωa s−1ωsbαs4 [Bk, Bl ] = βkl4 k < l

(3.16)

which will replace those in (2.9). The extension is completely characterized by:
• N type II coefficientsαk (k = 1, . . . , N); each of them gives rise to a non-trivial

extension ifωk = 0 and to a trivial one otherwise;
• N(N −1)/2 type III extension coefficientsβkl (k < l andk, l = 1, . . . , N), satisfying

ωkβkl = 0 ωlβkl = 0. (3.17)

Thus,βkl must be equal to zero when at least one of the constantsωk andωl is different
from zero. Whenβkl is non-zero, the extension that it determines is always non-trivial.

Theorem 3.4. The commutation relations of any central extensionuω(N+1) of the unitary
CK algebrauω(N+1) can be written as the commutation relations in the preceding statement,
together with

[Jab, I ] = 0 [Mab, I ] = 0 [Bk, I ] = γk4 (3.18)

which will replace those in (2.10). In addition to the extension coefficientsαk andβkl , the
extension is completely characterized by:
• N type III coefficientsγk (k = 1, . . . , N) satisfying

ωkγk = 0. (3.19)

Whenγk is non-zero, the extension that it determines is non-trivial.

All type II extensions come from the pseudocohomology mechanism [14, 15]. We can
write (3.16) as

[Jab,Mab] = −2ωab
b∑

s=a+1

(
Bs − αs

2ωs

)
4 (3.20)

which is well defined even if anyωs (s = a+1, a+2, . . . , b) is equal to zero. This clearly
shows that when a givenωs is different from zero, the extension coefficientαs gives rise
to a trivial extension, which can be removed by the one-cochainµ(Bs) = −αs/2ωs (all



Quasi-unitary Lie algebras 5337

other coordinates of the one-cochain being zero). However, whenωs goes to zero, the
corresponding extension is non-trivial, as the cochain defined above diverges, but the term
ωab/ωs in (3.20) does not.

In terms of the triangular arrangement for the generators ofsuω(N + 1) (see figure 1),
it is also worth remarking that type III extensions only affect the commutators of the Cartan
generators in the outermost ‘B ’ diagonal, while the type II extensionαa only modifies the
commutators of each of those pairs{Jij ,Mij } ≡ Xij with i < a 6 j , i.e. those pairs
contained inside a rectangle with left-lower cornerXa−1a.

As a by-product of these results we can give closed expressions for the dimension of
the second cohomology group of any Lie algebra in the unitary CK families.

Proposition 3.1. Let suω(N + 1) or uω(N + 1) be a Lie algebra belonging to a family
of unitary CK algebras, and letn be the number of coefficientsωk equal to zero. The
dimension of its second cohomology group is given by

dim(H 2(suω(N + 1),R) = n+ n(n− 1)

2
= n(n+ 1)

2
(3.21)

dim(H 2(uω(N + 1),R) = n+ n(n− 1)

2
+ n = n(n+ 3)

2
. (3.22)

The first termn in the sum of (3.21) and (3.22) corresponds to the central extensions
αk, the second termn(n − 1)/2 to theβkl and the third termn in (3.22) to the central
extensionsγk. We recall that the analogous expression for the quasi-orthogonal case is far
more complicated, and depends not only on the number of constants equal to zero, but also
on the detailed arrangement of zeros in the sequenceω1, . . . , ωN [1].

As expected for the simplesu(p, q) or the semisimpleu(p, q) algebras, which appear
within the two unitary CK families when allωa 6= 0, the second cohomology group is
trivial. The inhomogeneousiu(p, q) algebras, appearing in the special unitary family when
eitherω1 = 0 or ωN = 0, with all other constantsωa 6= 0, have, in any dimension, a single
non-trivial extension:α1 whenω1 = 0 or αN if ωN = 0. The special unitary flag algebra
(when allωa = 0) has the maximum number of non-trivial extensions within the special
unitary family, that is,N(N + 1)/2.

4. Examples

Let us illustrate the general results of the above section for thesuω(N + 1) algebras in
the three lowest-dimensional cases,N = 1, 2, 3. A completely similar discussion can be
performed for theuω(N + 1) algebras.

4.1. suω1(2)

We simply mention this example for the sake of completeness. The results for the
extensions ofsuω1(2) could also be obtained from those in [1] by using the isomorphism
suω1(2) ' soω1,+(3,R) provided byJ01/2↔ �01,M01/2↔ �02, −B1/2↔ �12. The most
general extension is defined by the extension coefficientα1 and the non-zero Lie brackets

[J01,M01] = −2ω1B1+ α14 [J01, B1] = 2M01 [M01, B1] = −2J01. (4.1)

The extension is non-trivial forω1 = 0 and trivial otherwise, the triviality being exhibited
by the redefinition

B1→ B1− α1

2ω1
4. (4.2)
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4.2. suω1,ω2(3)

The most general extended special unitary CK algebrasuω1,ω2(3) has nine generators
{J01, J02, J12,M01,M02,M12, B1, B2, 4}, and it is determined by three possible extension
coefficients{α1, α2, β12}, with ω1β12 = ω2β12 = 0. Their commutators are

[J01, J02] = ω1J12 [J01, J12] = −J02 [J02, J12] = ω2J01

[M01,M02] = ω1J12 [M01,M12] = J02 [M02,M12] = ω2J01

[J01,M02] = ω1M12 [J01,M12] = −M02 [J02,M12] = −ω2M01

[M01, J02] = −ω1M12 [M01, J12] = −M02 [M02, J12] = ω2M01

[J01, B1] = 2M01 [J02, B1] = M02 [J12, B1] = −M12

[J01, B2] = −M01 [J02, B2] = M02 [J12, B2] = 2M12

[M01, B1] = −2J01 [M02, B1] = −J02 [M12, B1] = J12

[M01, B2] = J01 [M02, B2] = −J02 [M12, B2] = −2J12 (4.3)

[J01,M01] = −2ω1B1+ α14 [J12,M12] = −2ω2B2+ α24

[J02,M02] = ω2(−2ω1B1+ α14)+ ω1(−2ω2B2+ α24)

[B1, B2] = β124. (4.4)

The triviality of type II extensions is governed by the values of the constantsω1, ω2.
We analyse this problem for each specific CK algebra withinsuω1,ω2(3). The extension
determined byα1 is trivial whenω1 6= 0, and the extension determined byα2 is trivial when
ω2 6= 0, the triviality being exhibited by the redefinitions

B1→ B1− α1

2ω1
4 B2→ B2− α2

2ω2
4. (4.5)

Thus, dim(H 2(suω1,ω2(3),R)) is equal to:
• 0 when bothω1, ω2 6= 0. Here bothα1 and α2 produce trivial extensions, andβ12

must vanish. This case corresponds to the extensions ofsu(3) for (ω1, ω2) = (+,+),
and su(2, 1) for (ω1, ω2) = {(+,−), (−,+), (−,−)} and the result is in agreement with
Whitehead’s lemma, according to which simple algebras have no non-trivial extensions.
• 1 for the inhomogeneous unitary algebrasiu(2) and iu(1, 1). These algebras appear

twice in the CK family, namely forω1 = 0, ω2 6= 0 and forω1 6= 0, ω2 = 0. In the first case
the only non-trivial extension coefficient isα1 and the extended Lie brackets (4.4) reduce to

[J01,M01] = α14 [J02,M02] = ω2α14 [J12,M12] = −2ω2B2 [B1, B2] = 0.

(4.6)

The second case is related to the former one due to the isomorphism (2.19). Here there is
a single non-trivial extension coefficientα2 and the extended Lie brackets are

[J01,M01] = −2ω1B1 [J02,M02] = ω1α24 [J12,M12] = α24 [B1, B2] = 0.

(4.7)

• 3 for the special unitary flag algebrasu0,0(3) whenω1 = ω2 = 0. The three extensions
are non-trivial

[J01,M01] = α14 [J02,M02] = 0 [J12,M12] = α24 [B1, B2] = β124.

(4.8)
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4.3. suω1,ω2,ω3(4)

We consider now the extensionssuω1,ω2,ω3(4) of the CK algebrasuω1,ω2,ω3(4). There are
six possible basic extension coefficients,{α1, α2, α3, β12, β13, β23}, which must satisfy the
conditions

ω1β12 = ω2β12 = 0 ω1β13 = ω3β13 = 0 ω2β23 = ω3β23 = 0 (4.9)

and the Lie brackets of the extension are given by the non-extended ones in (2.8) and by
the extended ones

[J01,M01] = −2ω1B1+ α14

[J02,M02] = ω2(−2ω1B1+ α14)+ ω1(−2ω2B2+ α24)

[J03,M03] = ω2ω3(−2ω1B1+ α14)+ ω1ω3(−2ω2B2+ α24)+ ω1ω2(−2ω3B3+ α34)

[J12,M12] = −2ω2B2+ α24

[J13,M13] = ω3(−2ω2B2+ α24)+ ω2(−2ω3B3+ α34)

[J23,M23] = −2ω3B3+ α34

[B1, B2] = β124 [B1, B3] = β134 [B2, B3] = β234. (4.10)

The results for each one of the 27 CK algebrassuω1,ω2,ω3(4) are displayed in table 1.
The columns in this table show, in this order, the number of coefficientsωa set equal to
zero (number of contractions), the centrally extended Lie algebras, the signs+,−, 0 of
each coefficient(ω1, ω2, ω3) together with the non-trivial central extensions allowed for
the algebra with these signs for the coefficients, and, finally, the dimension of the second
cohomology group as a sum of the number of non-trivial extensions of types II and III,
coming respectively from the coefficientsαk andβkl . In the table+ (−) denotes a positive
(negative)ωa coefficient which could be rescaled to 1 (−1).

Table 1. Non-trivial central extensionssuω1,ω2,ω3(4).

No Extended algebra (CK constants) [Non-trivial extensions] dimH 2

0 su(4) (+,+,+) 0
su(3, 1) (−,+,+), (−,−,+), (+,+,−), (+,−,−)
su(2, 2) (+,−,+), (−,+,−), (−,−,−)

1 iu(3) (0,+,+) [α1] or (+,+, 0) [α3] 1+0
iu(2, 1) (0,−,+), (0,+,−), (0,−,−) [α1] or

(+,−, 0), (−,+, 0), (−,−, 0) [α3]
t8(u(2)⊕ u(1)⊕ u(2)) (+, 0,+)[α2]
t8(u(2)⊕ u(1)⊕ u(1, 1)) (+, 0,−), (−, 0,+) [α2]
t8(u(1, 1)⊕ u(1)⊕ u(1, 1)) (−, 0,−) [α2]

2 (0, 0,+) [α1, α2, β12] or (+, 0, 0) [α2, α3, β23] 2+1
(0, 0,−) [α1, α2, β12] or (−, 0, 0) [α2, α3, β23]
(0,+, 0) [α1, α3, β13]
(0,−, 0) [α1, α3, β13]

3 Flag algebra (0, 0, 0) [α1, α2, α3, β12, β13, β23] 3+ 3
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5. Conclusions and outlook

We restrict ourselves here to three remarks. First, the pattern of three types of extensions
behaving under contractions in three different ways, first found for the quasi-orthogonal
family [1], appears also in the quasi-unitary case. This seems likely to be a general
phenomenon, not restricted to a single family of contractions of some Lie algebras. The
analysis of the extensions for the third CK main series of algebras, which embraces the
symplecticsp(p, q) in theCl series and their contractions, would be required to complete
the study of the relationships between cohomology and contractions undertaken in [1] and
continued in this paper. These algebras can be adequately realized by quaternionic anti-
Hermitian matrices, or, alternatively, by quaternionic anti-Hermitian traceless matrices plus
the Lie algebra of derivations of the quaternion division algebra. Work in this area is in
progress.

Second, as compared to the quasi-orthogonal case, the quasi-unitary algebras have a
comparatively smaller set of extensions, whose description in terms of the values taken
by the CK constantsωa is straightforward. The suitability of a CK approach to the study
of the central extensions of a complete family is therefore put forward more clearly than
in the orthogonal case. While the ordinary inhomogeneous orthogonal algebrasiso(p, q)

associated to the real orthogonalN = p + q dimensional flat spaces have non-trivial
extensions only in the caseN = 2, the algebrasiu(p, q) associated to the complex pseudo-
Euclidean Hermitian flat spaces have a single non-trivial extension, in any dimension. The
relevance of this fact in relation to the classical limit of quantum mechanics will be discussed
elsewhere.

Third, in addition to the threemain families of CK algebras, whose simple members
so(p, q), su(p, q), sp(p, q) can be realized as anti-Hermitian matrices over eitherR,C, or
H, there are other CK families. These families are also parametrized by constantsωi , and
are such that whenall constants are different from zero, the corresponding algebras are
simple Lie algebras. However, and unlike the three main CK series, all the simple algebras
in each of these families (those withωi 6= 0) are isomorphic as real Lie algebras. This fact
makes their properties somewhat different as far as the interplay between cohomology and
contraction is concerned. For instance, for evenn+ 1= 2r the real formsu∗(n+ 1) in the
Cartan seriesAn can be realized as the special linear algebrasl(r,H) over the quaternions,
and it has its own CK family,slω1,...,ωr−1(r,H), which includes asingle simple algebra
su∗(2r), as well as many non-simple contracted algebras. Likewise, the remainingAn
real form,sl(n+ 1,R), is the single simple Lie algebra in the familyslω1,...,ωN (N + 1,R).
Therefore, the two non-unitaryAn real algebras belong to rather different CK families,
although they appear to be in the same Cartan class. Even if the cohomology properties
of algebras in these two CK families should be expected to be given in terms broadly
similar to those found in the three main ‘signature’ series, their study is worthy of separate
consideration.
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Appendix. The general solution to the Jacobi identities

In order to obtain the general solution of the set of linear equations determining the possible
extensions of the unitary CK algebras, we first introduce a suitable notation for the central
extension coefficients, which is ‘adapted’ to the structure of the algebrassuω(N +1) (2.8)–
(2.9) anduω(N + 1) (2.8)–(2.10) whose basic generators are naturally divided in either
three or four ‘kinds’Jab, Mab, Bk and I . The symbol corresponding toξ(X, Y ) will have
one or two letters taken fromj , m, b and i, determined by the kind of basis generatorsX
andY . To this symbol we append two groups of indices, each coming from those of the
corresponding generators. The complete list of all extension coefficients as written in this
notation is

jab,de mab,de jmab,de mjab,de

jbab,k mbab,k bk,l jmab

j iab miab bil (A.1)

where we implicitly assumea < b, d < e, a, b, d, e = 0, . . . N , k < l, k, l = 1, . . . , N .
We remark thatjm, mj , jb, mb, ji, mi andbi are single, unbreakable symbols, and are
not products. In the course of the derivation we find it useful to sort these coefficients into
several subsets, as follows:
• coefficientsjab,de, mab,de, jmab,de andmjab,de involving four different indices; if we

write these four indices asa < b < c < d the coefficients are

jab,cd mab,cd jmab,cd mjab,cd

jac,bd mac,bd jmac,bd mjac,bd

jad,bc mad,bc jmad,bc mjad,bc (A.2)

• coefficientsjab,de, mab,de, jmab,de andmjab,de involving three different indices; if we
write the three indices asa < b < c these coefficients are

jab,ac mab,ac jmab,ac mjab,ac

jab,bc mab,bc jmab,bc mjab,bc

jac,bc mac,bc jmac,bc mjac,bc (A.3)

• coefficientsjmab involving two different indices

jmab (A.4)

• coefficientsjbab,i andmbab,i with two different indicesa < b and a third index
i ∈ {a, a + 1, b, b + 1}

jbab,i mbab,i (A.5)

• coefficientsjbab,j andmbab,j with two different indicesa < b and a third index
j /∈ {a, a + 1, b, b + 1}

jbab,j mbab,j (A.6)

• coefficientsbk,l with two different indicesk < l

bk,l (A.7)

• coefficientsjiab andmiab with two different indicesa < b

jiab miab (A.8)
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• coefficientsbil with a single index

bil. (A.9)

The Lie brackets of the extended CK algebrasuω(N + 1) anduω(N + 1) read

[Jab, Jac] = ωabJbc + jab,ac4 [Mab,Mac] = ωabJbc +mab,ac4
[Jab, Jbc] = −Jac − jab,bc4 [Mab,Mbc] = Jac +mab,bc4
[Jac, Jbc] = ωbcJab + jac,bc4 [Mac,Mbc] = ωbcJab +mac,bc4
[Jab, Jde] = jab,de4 [Mab,Mde] = mab,de4
[Jab,Mac] = ωabMbc + jmab,ac4 [Mab, Jac] = −ωabMbc −mjab,ac4
[Jab,Mbc] = −Mac − jmab,bc4 [Mab, Jbc] = −Mac −mjab,bc4
[Jac,Mbc] = −ωbcMab − jmac,bc4 [Mac, Jbc] = ωbcMab +mjac,bc4
[Jab,Mde] = jmab,de4 [Mab, Jde] = mjab,de4 (A.10)

[Jab, Ba] = −Mab − jbab,a4
[Jab, Ba+1] = Mab + jbab,a+14

[Ja a+1, Ba+1] = 2Ma a+1+ 2jba a+1,a+14

[Jab, Bb] = Mab + jbab,b4
[Jab, Bb+1] = −Mab − jbab,b+14

[Jab, Bj ] = jbab,j4
[Mab, Ba] = Jab +mbab,a
[Mab, Ba+1] = −Jab −mbab,a+1 b > a + 2

[Ma a+1, Ba+1] = −2Ja a+1− 2mba a+1,a+14

[Mab, Bb] = −Jab −mbab,b4 b > a + 2

[Mab, Bb+1] = Jab +mbab,b+14

[Mab, Bj ] = mbab,j4 (A.11)

[Jab,Mab] = −2ωab
b∑

s=a+1

Bs + jmab4 [Bk, Bl ] = bk,l4 (A.12)

[Jab, I ] = jiab4 [Mab, I ] = miab4 [Bl, I ] = bil4 (A.13)

where, as indicated before, the relationsa < b < c, a < d, d < e, j /∈ {a, a + 1, b, b + 1},
k < l for the indicesa, b, c, d, e = 0, . . . , N, j, k, l = 1, . . . , N and a, b, d, e are all
different, will be assumed without saying.

Our strategy here will be to enforce the complete set of Jacobi identities, first for
suω(N +1) and then foruω(N +1), in a carefully selected order which actually allows one
to explicitly solve the rather large set of linear equations. The first stage will be to identify
many extension coefficients which are forced to vanish; the remaining Jacobi equations
will drastically simplified and will either produce relations allowing one to express certain
derived extension coefficients in terms of the so-calledbasic ones, or further relations to
be satisfied by the basic extension coefficients.

To begin with, we show thatall coefficients in (A.2) vanish. Denoting by{X, Y,Z} the
Jacobi identity for the generatorsX, Y , andZ, we display several choices for them and the
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equations ensuing from these choices:

{Jab,Mcd, Bd}: jab,cd = 0

{Jab,Mcd, Bb}: mab,cd = 0

{Jab, Jcd, Bd}: jmab,cd = 0

{Jab, Jcd, Bb}: mjab,cd = 0 (A.14)

{Jad,Mbc, Bc}: jad,bc = 0

{Mad, Jbc, Bc}: mad,bc = 0

{Jad, Jbc, Bc}: jmad,bc = 0

{Mad,Mbc, Bc}: mjad,bc = 0 (A.15)

{Jab, Jbc, Jbd}: ωbcjab,cd + jac,bd − jad,bc = 0

{Jab,Mbc,Mbd}: ωbcjab,cd +mac,bd −mad,bc = 0

{Jab, Jbc,Mbd}: ωbcjmab,cd + jmac,bd −mjad,bc = 0

{Jab,Mbc, Jbd}: ωbcjmab,cd −mjac,bd + jmad,bc = 0. (A.16)

By substituting (A.14) and (A.15) into (A.16), we find thatall coefficients in (A.2) are
necessarily equal to zero. From now on, substitution of the already known information into
further equations will be automatically assumed.

The coefficients in (A.6) turn out also to be equal to zero:

{Mab, Bb, Bj }: jbab,j = 0 {Jab, Bb, Bj }: mbab,j = 0 j /∈ {a, a + 1, b, b + 1}.
(A.17)

Now we look for equations involving the coefficientsbk,l in (A.7). We find:

{Ja a+1,Ma a+1, Bk}: ωa a+1bk,a+1 = 0 16 k 6 a a = 1, . . . , N − 1

{Jb−1b,Mb−1b, Bl}: ωb−1bbb,l = 0 b + 16 l 6 N b = 1, . . . , N − 1

(A.18)

so theN(N − 1)/2 coefficients of the typebk,l might be different from zero. We denote
them as

βkl := bk,l (A.19)

and from (A.18) they must fulfil two additional conditions

ωkβkl = 0 ωlβkl = 0. (A.20)

We now look for Jacobi identities involving the extension coefficients in (A.5):

{Mab, Ba, Ba+1}: jbab,a+1 = jbab,a
{Mab, Ba, Bb}: jbab,b = jbab,a
{Mab, Ba, Bb+1}: jbab,b+1 = jbab,a
{Mab, Ba+1, Bb}: jbab,a+1 = jbab,b
{Mab, Ba+1, Bb+1}: jbab,a+1 = jbab,b+1

{Mab, Bb, Bb+1}: jbab,b = jbab,b+1
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{Jab, Ba, Ba+1}: mbab,a+1 = mbab,a
{Jab, Ba, Bb}: mbab,b = mbab,a
{Jab, Ba, Bb+1}: mbab,b+1 = mbab,a
{Jab, Ba+1, Bb}: mbab,a+1 = mbab,b
{Jab, Ba+1, Bb+1}: mbab,a+1 = mbab,b+1

{Jab, Bb, Bb+1}: mbab,b = mbab,b+1 (A.21)

which hold no matter whether eitherb = a + 1 or b 6= a + 1. These equations show that

jbab,a = jbab,a+1 = jbab,b = jbab,b+1

mbab,a = mbab,a+1 = mbab,b = mbab,b+1 (A.22)

and, therefore, these coefficients only depend on the first pair of indices. These common
values must be considered as another set ofbasic coefficients

τab := jbab,i ηab := mbab,i i ∈ {a, a + 1, b, b + 1}. (A.23)

Now we consider Jacobi identities leading to equations which involve the coefficients in
(A.3), thosejab,de, mab,de, jmab,de andmjab,de with threedifferent indices. This is the most
tedious part of the process, due to the need to pay minute attention to the index ranges. Let
us first look for equations involving the coefficients with indices{ab, bc}, which appear in
the middle line of (A.3)

{Jab,Mbc, Bc+1}: jab,bc = ηac c < N

{Jab,MbN, BN }: jab,bN = ηaN b < N − 1

{JaN−1,MN−1N, Ba}: maN−1,N−1N = ηaN a > 0

{J0N−1,MN−1N, B1}: m0N−1,N−1N = η0N

{Mab, Jbc, Bc+1}: mab,bc = ηac c < N

{Mab, JbN , BN }: mab,bN = ηaN b < N − 1

{MaN−1, JN−1N, Ba}: jaN−1,N−1N = ηaN a > 0

{M0N−1, JN−1N, B1}: j0N−1,N−1N = η0N (A.24)

{Jab, Jbc, Bc+1}: jmab,bc = τac c < N

{Jab, JbN , BN }: jmab,bN = τaN b < N − 1

{JaN−1, JN−1N, Ba}: mjaN−1,N−1N = τaN a > 0

{J0N−1, JN−1N, B1}: mj0N−1,N−1N = τ0N

{Mab,Mbc, Bc+1}: mjab,bc = τac c < N

{Mab,MbN, BN }: mjab,bN = τaN b < N − 1

{MaN−1,MN−1N, Ba}: jmaN−1,N−1N = τaN a > 0

{M0N−1,MN−1N, B1}: jm0N−1,N−1N = τ0N (A.25)

so in all cases, and no matter on the value of the middle indexb, we have

jab,bc = mab,bc = ηac jmab,bc = mjab,bc = τac. (A.26)

For the coefficients in the first line of (A.3) we obtain that

{Jab,Mac, Bc+1}: jab,ac = ωabηbc c < N

{Jab,MaN, BN }: jab,aN = ωabηbN b < N − 1

{Ja N−1,MaN, BN−1}: maN−1,aN = ωaN−1ηN−1N a < N − 2
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{Mab, Jac, Bc+1}: mab,ac = ωabηbc c < N

{Mab, JaN , BN }: mab,aN = ωabηbN b < N − 1

{MaN−1, JaN , BN−1}: jaN−1,aN = ωaN−1ηN−1N a < N − 2

{JN−2N−1,MN−2N, BN−1}:
jN−2N−1,N−2N + ωN−2N−1ηN−1N − 2mN−2N−1,N−2N = 0

{MN−2N−1, JN−2N, BN−1}:
−2jN−2N−1,N−2N + ωN−2N−1ηN−1N +mN−2N−1,N−2N = 0 (A.27)

{Jab, Jac, Bc+1}: jmab,ac = ωabτbc c < N

{Jab, JaN , BN }: jmab,aN = ωabτbN b < N − 1

{Ja N−1, JaN , BN−1}: mjaN−1,aN = ωaN−1τN−1N a < N − 2

{Mab,Mac, Bc+1}: mjab,ac = ωabτbc c < N

{Mab,MaN, BN }: mjab,aN = ωabτbN b < N − 1

{MaN−1,MaN, BN−1}: jmaN−1,aN = ωaN−1τN−1N a < N − 2

{JN−2N−1, JN−2N, BN−1}:
jmN−2N−1,N−2N + ωN−2N−1τN−1N + 2mjN−2N−1,N−2N = 0

{MN−2N−1,MN−2N, BN−1}:
−2jmN−2N−1,N−2N + ωN−2N−1τN−1N −mjN−2N−1,N−2N = 0. (A.28)

These equations are summarized in

jab,ac = mab,ac = ωabηbc jmab,ac = mjab,ac = ωabτbc (A.29)

so again these are derived extension coefficients, expressible in terms ofηbc andτbc.
For the coefficients in the third line of (A.3) with indices{ac, bc} we get

{Jac,Mbc, Ba}: mac,bc = ωbcηab a > 0

{J0c,Mbc, B1}: m0c,bc = ωbcη0b b > 1

{J0c,M1c, B2}: j0c,1c = ω1cη01 c > 2

{Mac, Jbc, Ba}: jac,bc = ωbcηab a > 0

{M0c, Jbc, B1}: j0c,bc = ωbcη0b b > 1

{M0c, J1c, B2}: m0c,1c = ω1cη01 c > 2

{J02,M12, B2}: − 2j02,12+ ω12η01+m02,12 = 0

{M02, J12, B2}: 2m02,12− ω12η01− j02,12 = 0 (A.30)

{Jac, Jbc, Ba}: mjac,bc = ωbcτab a > 0

{J0c, Jbc, B1}: mj0c,bc = ωbcτ0b b > 1

{J0c, J1c, B2}: jm0c,1c = ω1cτ01 c > 2

{Mac,Mbc, Ba}: jmac,bc = ωbcτab a > 0

{M0c,Mbc, B1}: jm0c,bc = ωbcτ0b b > 1

{M0c,M1c, B2}: mj0c,1c = ω1cτ01 c > 2

{J02, J12, B2}: 2jm02,12− ω12τ01−mj02,12 = 0

{M02,M12, B2}: − jm02,12− ω12τ01+ 2mj02,12 = 0. (A.31)
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These equations lead to

jac,bc = mac,bc = ωbcηab jmac,bc = mjac,bc = ωbcτab (A.32)

so these coefficients are also derived.
Finally, we look for equations involving the coefficients in (A.4), that isjmac. Whenever

there exists an indexb betweena andc, the choice

{Jab, Jac,Mbc}: jmac = ωbcjmab + ωabjmbc (A.33)

leads to an expression forjmac in terms ofjmab and jmbc. By iterating while possible,
we find that the coefficientsjmac with a and c not contiguous can be written in terms of
jmab with a andb contiguous. These must be considered as basic ones

αk := jmk−1k k = 1, . . . , N (A.34)

and the remaining coefficients in (A.4) are given, recalling thatωii ≡ 1, by

jmab =
b∑

s=a+1

ωa s−1ωsbαs b > a + 2. (A.35)

As far assuω(N + 1) is concerned, the final step in this process is to ascertain that
there is no relation for the extension coefficients further to the ones yet considered. It can
be checked thatall remaining Jacobi equations involving the generatorsJab, Mab andBl
are identically satisfied, so the process has indeed terminated.

Now we deal with theuω(N + 1) case; as Jacobi equations involvingJab, Mab andBl
have already been considered, we must take into account only the extra generatorI and the
associated extension coefficients. For these, successively we obtain

{Jab, Bb, I }: miab = 0

{Mab, Bb, I }: jiab = 0

{Jk−1k,Mk−1k, I }: ωkbik = 0 (A.36)

so the extension coefficients in (A.8) are equal to zero, and those in (A.9) are basic, to be
denoted as

γk := bik (A.37)

and must satisfy

ωkγk = 0. (A.38)

Again in this case, it is easy to check that all remaining Jacobi equations involving the
generatorI are satisfied and do not lead to any further relation.
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[15] de Azćarraga J A and Izquierdo J M 1995Lie Groups, Lie Algebras, Cohomology and some Applications in

Physics(Cambridge: Cambridge University Press)


