IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Central extensions of the families of quasi-unitary Lie algebras

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1998 J. Phys. A: Math. Gen. 31 5327
(http://iopscience.iop.org/0305-4470/31/23/015)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.122
The article was downloaded on 02/06/2010 at 06:55

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/31/23
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys. A: Math. Ger31 (1998) 5327-5347. Printed in the UK Pll: S0305-4470(98)90418-8

Central extensions of the families of quasi-unitary Lie
algebras

F J Herranz, J C Ferez Buenp and M Santandér

1 Departamento deifica, EU Poliecnica, Universidad de Burgos, E-09006 Burgos, Spain

1 Departamento de ifica Térica and IFIC, Centro Mixto Universidad de Valencia—CSIC,
E-46100 Burjassot, Valencia, Spain

§ Departamento deiBica Térica, Universidad de Valladolid, E-47011, Valladolid, Spain

Received 5 January 1998

Abstract. The most general possible central extensions of two whole families of Lie algebras,
which can be obtained by contracting the special pseudo-unitary algeliiasy) of the Cartan
seriesA; and the pseudo-unitary algebra&, ¢), are completely determined and classified for
arbitrary p andg. In addition to thesu(p, ¢) andu(p, q) algebras, whose second cohomology
group is well known to be trivial, each family includes many non-semisimple algebras; their
central extensions, which are explicitly given, can be classified into three types as far as their
properties under contraction are involved. A closed expression for the dimension of the second
cohomology group of any member of these families of algebras is given.

1. Introduction

This paper investigates the Lie algebra cohomology of the unitary Cayley—Klein (CK)
families of Lie algebras in any dimension. These families, also called ‘quasi-unitary’
algebras, include both the special (pseudo-)unitargp, ¢g) and (pseudo-)unitary(p, q)
algebras—which have only trivial central extensions—, as well as many other obtained
from these by a sequence of contractions, which are no longer semisimple and may have
non-trivial central extensions.

The paper can be considered as a further step in a series of studies on the CK families of
Lie algebras. These have both mathematical interest and physical relevance. The families of
CK algebras provide a frame to describe the behaviour of mathematical properties of algebras
under contraction; in physical terms this is related to some kind of approximation. The
central extensions for the family of quasi-orthogonal algebras, also in the general situation
and for any dimension, have been determined in a previous paper [1]. We refer to this work
for references and for physical motivations; we simply remark here that there are three main
reasons behind the interest in the second cohomology groups for Lie algebras. First, in any
guantum theory the relevant representations of any symmetry group are projective instead
of linear ones; second, homogeneous symplectic manifolds under a group appear as orbits
of the co-adjoint representation of either the group itself or of a central extension; and third,
quasi-invariant Lagrangians are also directly linked to the central extensions of the group;
these can also be related to Wess—Zumino terms. In addition to the references in [1], we
may add that Wess—Zumino-Witten models leading to central extensions have also been
studied (see, e.g., [2, 3] and references therein).
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The knowledge of the second cohomology group for a Lie algebra relies on the general
solution of a set of linear equations, yet some general results allow us to bypass the
calculations in special cases. For instance, the second cohomology group is trivial for
semisimple Lie algebras. However, once a contraction is made, the semisimple character
disappears, and the contracted algebra might have non-trivial central extensions. Instead
of finding the general solution for the extension equations on a case-by-case basis, our
approach is to do these calculations for a whole family including a large number of algebras
simultaneously. This program has been developed for the quasi-orthogonal algebras, and
here we discuss the ‘next’ quasi-unitary case. There are two main advantages in this
approach. First, it allows us to record, in a form easily retrievable, a large number of
results which may be needed in applications, both in mathematics and in physics. This
avoids at once and for all the case-by-case type computations of the central extensions of
algebras included in the unitary families. Second, it sheds some further light on the inter-
relations between cohomology and contractions, by discussing in particular examples how
and when a contraction increases the cohomology of the algebra: central extensions can be
classed into three types, with different behaviour under contraction.

Section 2 is devoted to the description of the two families of unitary CK algebras. We
show how to obtain these as graded contractions of the compact algefyrast 1) and
u(N +1), and we provide some details on their structure. It should be remarked that the CK
unitary algebras are associated to the complex hermitian spaces with metrics of different
signatures and to their contractions. In section 3 the general solution to the central extension
problem for these algebras is given; this includes the completely explicit description of all
possible central extensions and the discussion of their triviality. A closed formula for the
dimension of the second cohomology group is also obtained. Computational details on the
procedure to solve the central extension problem are given in the appendix. The results are
illustrated in section 4 for the lowest-dimensional examples. Finally, some remarks close
the paper.

2. The CK families of quasi-unitary algebras

The family of special quasi-unitary algebras, which involves the simple Lie algebras
su(p, q), as well as many non-simple algebras obtainethidyii and Wigner [4] contraction

from su(p, ¢) can be easily described in terms of graded contraction theory [5, 6], taking
the compact real formu (N + 1) of the simple algebras in the serigg as a starting point.

As is well known, the special unitary algebra can be realized by complex anti-Hermitian
and traceless matrices, and is the quotient of the algebra of all complex anti-Hermitian
matrices by its centre (generated by the pure imaginary multiples of the identity). It will
be convenient to consider the family of quasi-unitary algebras altogether; these can be
similarly described in terms of graded contractions:0V + 1), and will include algebras
obtained fromu(p, ¢) by Inéni—-Wigner contractions. Let us consider the (fundamental)
matrix representation of the algebras(N + 1) andu(N + 1), as given by the complex
matricesJ,,, M,,, B; and J,,, My, By, I

Jab = —eqp + €pq My, = i(eap + epa) By =i(ej—11-1— en)

N
I =i Zeaa (21)
a=0

wherea < b,a,b=0,...,N,[=1,..., N, and wherez,;, means thgN +1) x (N +1)
matrix with a single 1 entry in row and columnb. The commutation relations involved
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in either of these algebras are given by

[Jab, Jac] = Jbe [Jabs Jbe] = —Jac [Jacs Ibe] = Jap

[(Map, Mac] = Jpe [(Map, Mypc] = Jac (Mac, Mpe] = Jap

[Jab7 Mac] = Mp, [Jabs Mbc] = —Myc [Jacs Mbc] =—My

[(Map, Juc] = —Mp, (Map, Jpe] = =M [(Mac, Jpe] = May,

[Jap> Jae] =0 My, Mge] =0 [Jap, Mae] =0

[Jav» Bi]l = (8a1-1 — 8p1-1 + 861 — 8ar) My,

[May, Bl = —(8a,1-1 — 8pu—1 + b1 — Sar) Juv (2.2)

b

[Jar, M) = =2 ) B, [Bi,B]=0 (2.3)
s=a+l

[Jap, I] =0 [My, 11 =0 [B;, 1] = 0. (2.4)

The algebrau(N + 1) has a grading by a gro ?N related to a set oN commuting
involutions in the subalgebra (N + 1) generated by, [7, 8]. If S denotes any subset of
the set of indiceg0, 1, ..., N}, and xs(a) denotes the characteristic function o¥grthen
each of the linear mappings given by

SsJup = (=1xs@txs®) g, SsMyp = (=X @Hxs®ipg,, SsB; = B (2.5)

is an involutive automorphism of the algebna(N + 1); by considering all possible subsets
of indices we get ¥ different automorphisms defining E?N grading for this algebra.
The corresponding graded contractionss@{N + 1) constitute a large set of Lie algebras,
but there exists a particular subset or family of these graded contractions, nearer to the
simple ones, which essentially preserves the properties associated to simplicity, and which
belong to the so-termed [9, 10] ‘quasi-simple’ algebras. This family, to be defined later,
encompasses the special pseudo-unitary algebras (iA th€artan series) as well as their
nearest non-simple contractions. By taking the geneda&srinvariant under all involutions,
this grading can be extended to the algelb¢& + 1), whose graded contractions include
the pseudo-unitary algebras as well as many non-semisimple algebras; again a particular
family of these graded contractions, to be introduced later, preserves properties associated
to semi-simplicity. Collectively, all these algebras (special or not) are cglledi-unitary
these are also called Cayley—Klein algebras of unitary type, or unitary CK algebras, since
they are exactly those algebras behind the geometries of a complex Hermitian space with a
projective metric in the CK sense [10]. Another view to these algebras is given in [11].

The overall details on the structure of this family are similar to the orthogonal case. The
set of unitary CK algebras is parametrized Myreal coefficientso, (¢ =1, ..., N), whose
values codify in a convenient way the pertinent information on the Lie algebra structure
[12,13]. In terms of theV (N + 1)/2 two-index coefficientsv,, defined by

Wap ‘= Wa41Wa12 .« .. Wp a,b=0,1,..., N, a<b, w,u=1 (2.6)
which verify

Wae = WapWpe a<b<c Wy = Wa—1g a=1...,N (2.7)
the algebras to be denoted,, (N + 1) andu,(N + 1), v = (w1, ..., wy), of dimensions

(N +1)2—1 and(N +1)?, are generated by,,, M,;, B, andJ.,, M, B;, I (a < b), with
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commutators

[Jab’ Jac] = wathc [-]ah» ch] = _Jac [Jan ch] = wbcjab

[Mabv Mac] = Wap Jpe [Mab» Mbc] = Juc [Mac» Mbc] = wpcJap

[Jabv Mac] = Wqp M [‘]tlb7 Mbc] =—Mg [Jacv Mbc] = —wpcMyp

[Mabv Jac] = —wup My [Mab» JbC] =—M; [Mac» JbC] = wpc My

[Jalu Jde] =0 [Mab7 Mde] =0 [Jab, Mde] =0

[Jav> Bi] = (8a1-1 — Sp1-1 + 8p1 — Sar) My,

[(Map, Bl] = —(8a1-1— 8p1-1 + Sp1 — 8a) Jav (2.8)

b

[Jab» Map] = =204 Y, B, [By,B]=0 (2.9)
s=a+1

[Jap, I] =0 [My, 11 =0 [B;, 11 =0 (2.10)

wherea, b,c,d,e =0,...,N andk,l =1,..., N; we assume: < b < ¢ for each set of

three indiceda, b, ¢}, anda < b, d < e for each set of four indice§, b, d, e} which are
also assumed to bdifferent

2.1. The unitary CK groups

The connection with groups of isometries of a Hermitian metric is as follows: for a
generic choice, withall w, # 0, let us consider the spa¢&'+! endowed with a Hermitian
(sesqui)linear form.|.),, : CN*1 x CN+1 — C associated to the matrix

7, = diagl, wo1, woy, . .., woy) = diag(l, w1, wiwsz, ..., w1...wN); (2.112)

this is, for any pair of vectora, b € CN*1,
N
(alb), :=a’b° + a'wib' + @Pwrwb® + - =Y @ woib'. (2.12)
i=0

Let us define the group,,,. . ., (N +1) = U,(N + 1) as the group of linear isometries of
the Hermitian metric (2.11). The isometry condition

(Ua|Ub),, = (a|b), Va,be CN*t! (2.13)
implies for the matrixU € U, (N + 1) the condition
U'z,U =1, YU € U,(N + 1). (2.14)

For the corresponding Lie algebra the above relation leads to
X'7,+7,X=0 VX € uy,(N +1). (2.15)
This Lie algebra is generated by the complex matrices (cf (2.1))

Jap = —Wapeap + €pa My, = 1(waveap + €pa) By =i(ej—11-1 — en)
N
I =i Zeaa (216)
a=0

witha <b,a,b=0,...,N,[=1,...,N.

The group SU,,,...o (N +1) = SU,(N + 1) is defined similarly by adding the
unimodularity condition déU) = 1; this leads for the Lie algebra to the condition
tracgX) = 0, so the algebrau,, (N + 1) is generated by,,, M,;,, B, alone.
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The action of the group&,,(N + 1) andSU,(N + 1) in CN*! is not transitive, and the
‘sphere’ with equation

N
(@l@), =Y Fogx' =1 (2.17)
i=0

is stable. For the action oSU,(N + 1), the isotropy subgroup of a reference point in
this sphere, sayl, 0, ..., 0), is easily shown to be isomorphic 8,,, ......», (), and the
isotropy subgroup of theay of a reference point %/, qs....y (N), locally isomorphic to
UD) ® SUs....on (N).

When the constants, are allowed to vanish, the set of isometries of the Hermitian
metric (2.11) is larger than the group generated by the matuggsM,;, B;, I. In this
case, there are additional geometric structure&Nm? (related to the existence of additional
invariant foliations similar to the one implied by (2.17)), and the proper definition of the
automorphism group of these structures leads again to the group generated by the matrix Lie
algebra (2.16) with the commutation relations (2.8)—(2.10). These matrix realizations can
be considered as the fundamental representation of the unitary CK Lie algep(as+ 1)
andu,(N + 1).

The quotient spaceSU,, u,.ws....on (N + 1) /(U(D) & SU,,. e, ....
Hermitian spaces which includes examples with non-definite and/or degenerate Hermitian
metrics; the CK scheme provides a common frame to discuss them all jointly. The most
familiar corresponds ta, = w3 = --- = wy = 1, and depends on a single parameter
w1 = K; whenK > 0or K < 0 these are the usual elliptic or hyperbolic complex Hermitian
spaces of (holomorphic constant) curvatufe whenw; = 0 we get the ‘Euclidean’ flat
Hermitian space (finite-dimensional Hilbert space).

Since each coefficienb, can be positive, negative or zero, each unitary CK family is
comprised of 3 Lie algebras although some of them may be isomorphic. For instance,
the map

.....

Jab = oy = —JIN-bN—-a Mayp — M, = —My_p N—a B, — B/ = Byi1
(2.18)
provides an isomorphism
suwl,wg 44444 WN-1,ON (N + 1) = SuwN,wN_l,...,wg,wl(N + 1)' (2'19)

2.2. Structure of the unitary CK algebras

The unitary CK algebrasu, (N + 1) contain many subalgebras isomorphic to algebras in
both familiessu,,(M + 1) andu,(M + 1), M < N. To best describe this, we introduce a
new set of Cartan subalgebra generatorssfoy(N + 1), G, (a =1, ..., N), defined by

1 1
Gy'=—-(B1+2B2+---+(@—1DB,1) + By + ———((N —a)Bu1
a N+1l-a
+(N —a—1Bs2+ -+ By). (2.20)
In the matrix realization (2.16§;, is given by

(5 ()

s=0 s=a

so eachG, appears as a direct sum of two blocks, each proportional with a pure imaginary
coefficient to the identity matrix.
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Denoting byX;; the pair of generatorg§/;;, M;;}, we can check that the seX;;, i, j =
0,1,...,a—1B,l=1,...,a — 1) closes a Lie subalgebra,, ., ,(a). Furthermore,

G, commutes with all the generators in this subalgebra, so that the former generators plus
aG, close an algebra isomorphic iq, . ., ,(a).

Similarly, the setX;;,i, j =a,a+1,...,N; B;, l=a+1,..., N) closes the special
unitary CK Lie algebrau,,,,, .., (N +1—a), and by adding-(N + 1 —a)G, we get an
algebra isomorphic ta,,,.,, o, (N +1—a).

This structure can be visualized by arranging the basis generators as in figure 1. The

__________ wy (N + 1 —a) correspond, in this
order, to the two triangles to the left and below the rectangle, both excluding the generator
G,. The unitary subalgebras,, ., ,(a@) andu,,,, .,(N +1—a) correspond, in this
order, to the two triangles to the left and below the rectangle, both including the generator
G,. This generatoG, closes a«(1) subalgebra.

.....

Xo1 Xo2 ... Xoa-1 Xoa Xoa+1 e e Xon
B X12 X141 X14 X1a4+1 X1y
5 ) . . .

Xo—24-1 | Xa—24a Xa—2a+1 s v Xa-2n
Ba—l Xa—la Xa—la+l s s Xa—lN

Ga Xowrr ... T Xon

Bu+l
Xnv-2nv-1 Xwn-2n
By_1 Xn-an
By

Figure 1. Generators of the (special) unitary CK algebras.

We sum up the details relative to the structure of the special unitary CK algebras in two
statements.

e When all w, are different from zerosu,(N + 1) is a pseudo-unitary simple Lie
algebrasu(p, ¢) in the Cartan seriedy (p andg are the number of positive and negative
signs in the diagonal of the metric matrix (2.1p)+¢g = N + 1).

e If a coefficientw, vanishes, the CK algebra is a non-simple Lie algebra which has a
semidirect structure

where the subalgebras appearing in (2.22) are generated by

t=(X;;,i=01...,a-1 j=a,a+1...,N)

SUey,. 0o @) =(Xi5,0,j=0,1,...,a—=1, B,l=1...,a—-1)

u(l) = (Gy)

SUggir,oy(N+1—a) =(X;;,i,j=a,a+1,...,N;B,l=a+1 ...,N). (2.23)

We note thatr is an Abelian subalgebra of dimension(% + 1 — a). In terms of the
triangular arrangement of generators (figure rl)js spanned by the generators inside the
rectangle; we remark that these generators do not close a subalgebrasywbel. The
three remaining sets are always subalgebras, no matter whether @5 800.
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For the particular case; = 0 (or, mutatis mutandiswy = 0) the contracted algebra is
a guasi-unitary inhomogeneous algebra,

SUQ,wy,...,on (N + 1) =1y O Uw,,...,on (N)
The subindex & in ¢ denotes the real dimension of= CV which can be identified

..........

discussed after (2.17). In the case whetgws, ..., wy are all different from zero, the
algebra is an ordinary inhomogeneous pseudo-unitary (not special) algebra

t2N®uw2 ..... wN(N)ElM(PJ]) p+q=N

and in this case,y can be identified to th&/-dimensional flat complex Hermitian space

with signaturep, ¢ determined as the number of positive and negative terms in the sequence
(1, wy, wows, ..., w7 ...wyN).

simultaneously several such decompositions. The more contracted case corresponds to
taking all w, equal to zero; this gives rise to the special unitary flag algebra.

3. Central extensions

Now we proceed to compute in a unified way all the central extensions for the two unitary
families of CK algebras, for arbitrary choices of the constantsand in any dimension.

Let G be an arbitrary--dimensional Lie algebra with generatdes,, ..., X,} and structure
constantsCX. A central extensiorG of the algebraG by the one-dimensional algebra
generated byE will have (r + 1) generatorgX;, E) with commutation relations given by

r

[Xi. X;] =) CiXi+ &8 [E,X]=0. (3.1)
k=1
The extension coefficients or central charggsmust be antisymmetric in the indices;,
&;; = —&; and must fulfil the following conditions coming from the Jacobi identities in the

extended Lie algebra:
> (Ch&u + Cliu + Cliéy) = 0. (3.2)
k=1

These extension coefficients are the coording€X;, X;) = &;) of the antisymmetric
two-tensoré which is the two-cocycle of the specific extension being considered, and (3.2)
is the two-cocycle condition for the Lie algebra cohomology.

Let us consider the ‘abstract’ extended Lie algeBravith the Lie brackets (3.1) and
let us perform a change of generators:

wherep; are arbitrary real numbers. The commutation rules for the generggrdecome
(X, X]]=) CEX;+ (g,-j -3 C!‘,m) E. (3.4)
k=1 k=1

Thus, the general expression for the two-coboundangenerated by is

Su(Xi X)) =) Chiu. (35)
k=1
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Two two-cocycles differing by a two-coboundary lead to equivalent extensions; the classes
of equivalence of non-trivial two-cocycles associated with the terésdedermine the second
cohomology groupH?(G, R).

3.1. The general solution to the extension problem for the unitary CK algebras

In a previous paper [1] we have given the general solution to the extension equations for
the case of the orthogonal CK algebras. The same approach can be used for the family
of quasi-unitary algebras. However, and in order not to burden the exposition, the main
details on the procedure have been placed in the appendix. The results obtained there give
the general solution to the problem of finding the central extensions for the unitary CK
algebras. They are summed up in the following.

Theorem 3.1. The most general central extensian,(N + 1) of any algebra in the family
of special unitary CK algebras:, (N +1) is determined by the followinfasiccoefficients.
Type I.N(N + 1)/2 basic extension coefficientgs, and N(N + 1)/2 basic extension

coefficientst,, (a < b, a,b = 0,1,..., N). These coefficients are not subjected to any
further relationship.

Type Il. N basic extension coefficientg, (k = 1,..., N), not subjected to any further
relationship.

Type lll. N(N — 1)/2 basic extension coefficieng; (k < I, k,l = 1,..., N) which
must satisfy the conditions

P =0 w1Br = 0. (3.6)

Theorem 3.2. The most general central extensigf(N + 1) of any algebra in the unitary
CK family u,, (N +1) is determined by the basic extension coefficients given in theorem 3.1,
and by an additional set of coefficients.

Type lll. N basic extension coefficienig (k =1, ..., N), subjected to the relation

Wi Ve = 0. (37)
For any given choice of the constantg, these basic extension coefficients determine

two-cocycles for the algebras, (N + 1) andu,(N +1). The Lie brackets of the extended
algebrassu,, (N + 1) andu, (N + 1) are given by

[Jab> Jac]l = @ap(Jpe + b E) [(Map, Mac] = @ap(Jpe + b E)

[Jabs Jbc] = —(Jac + Nac E) [(Map, Mpe] = Jae + Nac E

[Jacs Ibe] = @pe(Jap + Map E) [Mac, Mpce] = @be(Jap + ab E)

[Jabs Jmun] =0 My, Mypy] =0

[Jab> Mac] = @ap(Mpe + Tpc B) [(Map, Jac] = —@ar,(Mpe + 75 B)

[Jab> Mpe] = —(Mye + T4c E) [(Map, Jbe] = —(Mae + T4c E)

[Jacs Mpe] = —wpe(Map + Tap B) [(Mac, Jpe] = @pe(Map + T4 B)

[Jab, Mimn] =0 (Map, Jun] =0

[Jap, Bi] = (8a1—1 — 8p -1 + 81 — 8a1) (Map, + Tap E)

[May, Bl = —(8a,1-1 — b1+ 8p1 — 8ar) (Jap + Nap B) (3.8)

b b
[Jab» Map) = =200 Y Bi+ Y @as 1000, E [Bi. Bl = pu &
s=a+1 s=a+1

[Jap, 11 =0 [Map, 11 =0 [Bi, 1] = & (3.9)
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wherea <b <c, k <I, m <n anda, b, m, n are all different.

The complete expression for the two-cocycles fag,(N + 1) and u,(N + 1) can

be read directly from these commutators; for future convenience, we collect some
expressions relating the basic extension coefficients with particular values of the two-
cocycles determining the extensions (however, and as can be seen in (3.8), most of these
basic coefficients appear related to the values of the cocycle in several ways)

Nac = _é(Jub’ ch) Tac = _E(Jabv Mb(')

o = §(Ji—1k, Mi—11) Bu = E(By, B) (3.10)

Ve = (B, I). (3.11)

3.2. Equivalence of extensions

According to the general discussion in the beginning of this section, we now look for the
more general coboundary for,(N + 1) or u,(N + 1). We write a change of basis (see
(3.3)) for the generators as
Jab — Ja,b = Jup + 04 & M., — M;b = My, + par B

B, — Bl/< = By + W E (3.12)
I —>1+¢E (3.13)
whereo,,, par, Ux and ¢ are the values oft on the generatord,,, M,,, B, andI. By

using (3.5) and the structure constants of the algelwgéN + 1) or u, (N + 1) read from
(2.8)—(2.10), we find for the associated coboundaties

Su(Japs Ipe) = —04c S (Jap, Mpe) = —Puc
S (Jx—1k, Mi—11) = 2w vk Su(Byx, B)) =0 (3.14)
81.(Bp, I) = 0. (3.15)

We shall not need the remaining values of the coboundatiesfor su,(N + 1) or

u,(N + 1); eachéu being a two-cocycle, it must necessarily appear as a particular case
of the most general two-cocycles which are completely determined by the basic extension
coefficients (3.10).

The question of whether a general two-cocycle for a CK algebra in theorem 3.1 defines
a trivial extension amounts to checking whether it is a coboundary, which will allow the
elimination of the centraE term from (3.8). This may depend on the values of the constants
w,. In fact, the three types of extensions behave in three different ways, which mimics the
pattern found in the orthogonal case [1].

e Type | extensions can be performed for all unitary CK algebras, since thereas-no
dependent restriction to the basic type | coefficients n.,. However, as seen in (3.14),
these extensions asdwaystrivial. A considerable simplification of all expressions can be
gained if these trivial extensions are simply discarded, as we shall do from now on. Hence,
for the extendedalgebra, the whole block of commutation relations in (2.8) will hold and
only those commutators in (2.9) or (2.10) may change.

e Type Il extensions also appear in all unitary CK algebras, as theredg-tependent
restriction to the basic type Il coefficients.. The triviality of these extensions is,-
dependent, and (3.14) shows that the extension determined by the coeffidenbn-trivial
if w, = 0, and trivial otherwise. It is within this type of extension thapseudo-extension
(trivial extension by a two-coboundary) may become a non-trivial extension by contraction
[14, 15].
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e Type lll extensions behave in a completely different way. Due to the additional
conditions (3.6) and (3.7) that type Il extension coefficients must fulfil, some of them
might be necessarily equal to zero. Hence, these extensions do not exist for all unitary CK
algebras. However, those allowed (ghgfor each pair of vanishing constantg = w; =0
and for the (non-special) unitary case one additiondbr each vanishing constaaj = 0)
are always non-trivial, as the last equations in (3.14) and (3.15) show. Therefore, type llI
extensions do not appear through the pseudo-extension mechanism.

3.3. The second cohomology groups of the unitary CK algebras

If we disregard type | extensions, which are trivial for all members in the two CK families
of unitary algebras, the above results can be summarized in the following.

Theorem 3.3. The commutation relations of any central extensing(N +1) of the special
unitary CK algebrau,, (N +1) can be written as the commutation relations in (2.8), together
with

b b
[Jab, Map] = —2wap Z B + Z Wg s—1WspOs B [Bk, Bi] = Bu & k<l

s=a+1 s=a+1
(3.16)
which will replace those in (2.9). The extension is completely characterized by:
e N type Il coefficientsey, (k = 1,..., N); each of them gives rise to a non-trivial

extension ifw, = 0 and to a trivial one otherwise;
e N(N —1)/2 type Ill extension coefficientgy; (k </ andk,/ =1,..., N), satisfying

orPu=0 w B = 0. (3.17)

Thus, 8; must be equal to zero when at least one of the constgnind w; is different
from zero. Whengy, is non-zero, the extension that it determines is always non-trivial.

Theorem 3.4. The commutation relations of any central extensigN + 1) of the unitary
CK algebrau,,(N+1) can be written as the commutation relations in the preceding statement,
together with

[Jap, I1=0 [Map, 1T =0 [B. 1] = v E (3.18)

which will replace those in (2.10). In addition to the extension coefficieptand g;, the
extension is completely characterized by:
e N type lll coefficientsy, (k =1, ..., N) satisfying

Wi Ve = 0. (319)
Wheny, is non-zero, the extension that it determines is non-trivial.

All type Il extensions come from the pseudocohomology mechanism [14,15]. We can
write (3.16) as

b
U
ubs Myp] = —2w, B, — g 3.20
Uats Mas wbsz;l( ) (3.20)
which is well defined even if any, (s =a+1,a+2,...,b) is equal to zero. This clearly

shows that when a givesn, is different from zero, the extension coefficient gives rise
to a trivial extension, which can be removed by the one-cochdiBy) = —ay /2w, (all
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other coordinates of the one-cochain being zero). However, whegoes to zero, the
corresponding extension is non-trivial, as the cochain defined above diverges, but the term
wap/wy in (3.20) does not.

In terms of the triangular arrangement for the generators:gfN + 1) (see figure 1),
it is also worth remarking that type Il extensions only affect the commutators of the Cartan
generators in the outermosB™* diagonal, while the type Il extensiom, only modifies the
commutators of each of those paif$;, M;;} = X;; with i < a < j, i.e. those pairs
contained inside a rectangle with left-lower coriér_1,.

As a by-product of these results we can give closed expressions for the dimension of
the second cohomology group of any Lie algebra in the unitary CK families.

Proposition 3.1. Let su,(N + 1) or u,(N + 1) be a Lie algebra belonging to a family
of unitary CK algebras, and let be the number of coefficients;, equal to zero. The
dimension of its second cohomology group is given by

dim(H2(suy,(N + 1), R) = n + "(”2_ b_ "(”; b
nn-—1 nn+3)

> +n= > .

The first termn in the sum of (3.21) and (3.22) corresponds to the central extensions
ag, the second terne(n — 1)/2 to the B, and the third term in (3.22) to the central
extensionsy,. We recall that the analogous expression for the quasi-orthogonal case is far
more complicated, and depends not only on the number of constants equal to zero, but also
on the detailed arrangement of zeros in the sequence. ., wy [1].

As expected for the simplex(p, ¢) or the semisimple:(p, q) algebras, which appear
within the two unitary CK families when albb, # 0, the second cohomology group is
trivial. The inhomogeneous:(p, ¢) algebras, appearing in the special unitary family when
eitherw; = 0 or wy = 0, with all other constants, # 0, have, in any dimension, a single
non-trivial extension:o; whenw; = 0 or ay if wy = 0. The special unitary flag algebra
(when allw, = 0) has the maximum number of non-trivial extensions within the special
unitary family, that is,N(N + 1)/2.

(3.21)

dim(H?(u,(N +1),R) =n + (3.22)

4. Examples

Let us illustrate the general results of the above section forsth€N + 1) algebras in
the three lowest-dimensional casés,= 1,2,3. A completely similar discussion can be
performed for the:, (N + 1) algebras.

4.1.5u,,(2)

We simply mention this example for the sake of completeness. The results for the
extensions ofu,, (2) could also be obtained from those in [1] by using the isomorphism
suwl(Z) ~ ,S‘0w1,+(3, R) provided byJ01/2 < Qo1, M01/2 < Qop, —31/2 < Q1. The most
general extension is defined by the extension coefficigrand the non-zero Lie brackets

[Jo1, Mo1] = —2w1B1 + 01 B [Jo1, B1] = 2Mo1 [Mo1, B1] = —2Jo1. (4.1)

The extension is non-trivial fow; = 0 and trivial otherwise, the triviality being exhibited
by the redefinition

a1
Bl — B]_—

g. 4.2)
w1
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4.2. 5Uy,.0,(3)

The most general extended special unitary CK algebrg ,(3) has nine generators
{Jo1, Joz, J12, Mo1, Moo, M1, B1, B, E}, and it is determined by three possible extension
coefficients{ay, oz, B12}, With w1812 = woB12 = 0. Their commutators are

[Jo1, Jo2] = w112 [Jo1, J12] = —Jo2 [Joz2, J12] = w2Jo1

[Mo1, Moz] = w1J12 [Mo1, M12] = Joz [Moz, M12] = w2Jo1

[Jo1, Mog] = w1M12 [Jo1, M12] = —Mo2 [Jo2, M12] = —w2Mo1

[Mo1, Joo] = —w1M12 [Moy, J12] = —Mo2 [Mo2, J12] = w2Moy

[Jo1, B1] = 2Mo; [Jo2, B1] = Mo2 [J12, B1] = —M12

[Jo1, B2] = —Moy [Jo2, B2] = Mo2 [J12, B2] = 2M1;

[Mo1, B1] = —2Jn1 [Moz, B1] = —Joz [M12, B1] = J12

[Mo1, B2] = Jo1 [Moz, B2] = —Jo2 [M12, Bo] = —2J12 (4.3)
[Jo1, Moa] = —2w1B1 + a1 B [J12, M13] = —2w;B; + a2 E

[Jo2, Moz] = wa(—2w1B1 + a1 E) + w1(—2w2B2 + a2 E)

[B1, B2] = B12E. (4.4)

The triviality of type Il extensions is governed by the values of the constantss.
We analyse this problem for each specific CK algebra wiip, .,,(3). The extension
determined byy; is trivial whenw; # 0, and the extension determined dayis trivial when
wy # 0, the triviality being exhibited by the redefinitions

o1 a2

Bl_)Bl_Za)E Bz—)Bz—zw
1 2

g. (4.5)

Thus, din(H2(su,, .,(3), R)) is equal to:

e 0 when bothw;, w, # 0. Here botha; and a, produce trivial extensions, angh,
must vanish. This case corresponds to the extensions:@ for (w1, w2) = (+, +),
andsu(2, 1) for (w1, w2) = {(+, —), (—, +), (—, —)} and the result is in agreement with
Whitehead’s lemma, according to which simple algebras have no non-trivial extensions.

¢ 1 for the inhomogeneous unitary algebras2) andiu(1, 1). These algebras appear
twice in the CK family, namely fotw; = 0, w, # 0 and forw; # 0, w, = 0. In the first case
the only non-trivial extension coefficientdg and the extended Lie brackets (4.4) reduce to

[Jo1, Moa] = a1 E [Jo2, Mo2] = woa1 B [J12, M13] = —2w,B> [B1, Bo] =0.
(4.6)

The second case is related to the former one due to the isomorphism (2.19). Here there is
a single non-trivial extension coefficieap and the extended Lie brackets are

[Jo1, Mo1] = —2w1 By [Jo2, Mog] = w1028 [J12, M1o] = 0B [B1, Bo] =0.
4.7

e 3 for the special unitary flag algebsag o(3) whenw; = w, = 0. The three extensions
are non-trivial

[Jo1, Mo1] = a1 E [Jo2, Moo] =0 [J12, M1o] = 2B [B1, B2] = B12E.
(4.8)
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4.3. Sl .05 (4)

We consider now the extensiols,, ., .,(4) of the CK algebrasu,, «, »,(4). There are
six possible basic extension coefficiensy, az, a3, B12, B13, B23}, which must satisfy the
conditions

w1P12 = w2f12 =0 w113 = w3f13=0 w2f23 = w3f3 =0 (4.9)

and the Lie brackets of the extension are given by the non-extended ones in (2.8) and by
the extended ones

[Jo1, Mo1] = —2w1B1 + a1 B

[Jo2, Moz2] = wo(—2w1 By + 01 B) + w1(—2w2Bs + a2 E)

[Jo3, Mo3] = wowsz(—2w1B1 + 01 E) + w1w3(—2wo By + a2 8) + wiwo(—2w3Bs + azE)
[J12, M13] = —2wy By + a2 B

[J13, M13] = w3(—2w2B2 + a2E) + w2(—2w3B3 + a3E)

[J23, M23] = —2w3B3 + a3E

[B1, Bo] = p12E [B1, B3] = B13E [B2, Bs] = B23E. (4.10)

The results for each one of the 27 CK algebras, ., .,(4) are displayed in table 1.
The columns in this table show, in this order, the number of coefficieptset equal to
zero (number of contractions), the centrally extended Lie algebras, the $ighsO of
each coefficient(w;, wo, w3) together with the non-trivial central extensions allowed for
the algebra with these signs for the coefficients, and, finally, the dimension of the second
cohomology group as a sum of the number of non-trivial extensions of types Il and lll,
coming respectively from the coefficientg and 8;. In the table+ (—) denotes a positive
(negative)w, coefficient which could be rescaled to 1X).

Table 1. Non-trivial central extensionsiz,, .., w; (4).

No Extended algebra (CK constants) [Non-trivial extensions] Hifn
0 su(4) (+.+,+) 0
su(3,1) =+ 5 =, F+ ) =)
su(2,2) (+ =), (= 4+, =), (=, =, =)
1 iu(3) (O, +, +) [aa] or (+, +, 0) [e3] 1+0
(2,1 (0, =, +), (0, 4+, =), (0, —, =) [aa] OF
(+, =0, (= +,0), (=, —,0) [ag]
tgu(2) ® u(l) ®u(2) (+, 0, +H)[e2]
tg(2) ®u(l) ®u(l, 1)) (+,0, =), (=, 0, +) [e2]
rgu(1, 1) ®u(l) ®u(l, 1) (= 0,-) [e2]
2 (0,0, +) [a1, a2, p12] Or (+,0,0) [e2, a3, B3] 2+1

(0,0, =) [ra, a2, B12] or (-, 0,0) [z, a3, B23]
(0, 4. 0) [era, a3, Ba3]
(0, —,0) [0, a3, 13]

3 Flag algebra (00, 0) [ea, @2, a3, P12, P13, B23] 3+3
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5. Conclusions and outlook

We restrict ourselves here to three remarks. First, the pattern of three types of extensions
behaving under contractions in three different ways, first found for the quasi-orthogonal
family [1], appears also in the quasi-unitary case. This seems likely to be a general
phenomenon, not restricted to a single family of contractions of some Lie algebras. The
analysis of the extensions for the third CK main series of algebras, which embraces the
symplecticsp(p, g) in the C, series and their contractions, would be required to complete
the study of the relationships between cohomology and contractions undertaken in [1] and
continued in this paper. These algebras can be adequately realized by quaternionic anti-
Hermitian matrices, or, alternatively, by quaternionic anti-Hermitian traceless matrices plus
the Lie algebra of derivations of the quaternion division algebra. Work in this area is in
progress.

Second, as compared to the quasi-orthogonal case, the quasi-unitary algebras have a
comparatively smaller set of extensions, whose description in terms of the values taken
by the CK constants, is straightforward. The suitability of a CK approach to the study
of the central extensions of a complete family is therefore put forward more clearly than
in the orthogonal case. While the ordinary inhomogeneous orthogonal algeb(asq)
associated to the real orthogondll = p + ¢ dimensional flat spaces have non-trivial
extensions only in the cagé = 2, the algebrasu(p, g) associated to the complex pseudo-
Euclidean Hermitian flat spaces have a single non-trivial extension, in any dimension. The
relevance of this fact in relation to the classical limit of quantum mechanics will be discussed
elsewhere.

Third, in addition to the threenain families of CK algebras, whose simple members
so(p, q),su(p, q),sp(p, g) can be realized as anti-Hermitian matrices over eithget, or
H, there are other CK families. These families are also parametrized by constaatsd
are such that wheall constants are different from zero, the corresponding algebras are
simple Lie algebras. However, and unlike the three main CK series, all the simple algebras
in each of these families (those with) # 0) are isomorphic as real Lie algebras. This fact
makes their properties somewhat different as far as the interplay between cohomology and
contraction is concerned. For instance, for exen 1l = 2r the real formsu*(n + 1) in the
Cartan seriesi,, can be realized as the special linear algeldta H) over the quaternions,
su*(2r), as well as many non-simple contracted algebras. Likewise, the remaining
real form,sl(n + 1, R), is the single simple Lie algebra in the fami¥,, ., (N + 1, R).
Therefore, the two non-unitary,, real algebras belong to rather different CK families,
although they appear to be in the same Cartan class. Even if the cohomology properties
of algebras in these two CK families should be expected to be given in terms broadly
similar to those found in the three main ‘signature’ series, their study is worthy of separate
consideration.
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Appendix. The general solution to the Jacobi identities

In order to obtain the general solution of the set of linear equations determining the possible
extensions of the unitary CK algebras, we first introduce a suitable notation for the central
extension coefficients, which is ‘adapted’ to the structure of the algebgaav + 1) (2.8)—

(2.9) andu,(N + 1) (2.8)—(2.10) whose basic generators are naturally divided in either
three or four ‘kinds’J,,, M,;,, By andI. The symbol corresponding (X, Y) will have

one or two letters taken from, m, b andi, determined by the kind of basis generatérs
andY. To this symbol we append two groups of indices, each coming from those of the
corresponding generators. The complete list of all extension coefficients as written in this
notation is

jub,de Mgp,de jmab,de mjab,de
Jbab i mbap i by Jmap
Jiab Migp bi (A.1)

where we implicitly assume < b,d < e,a,b,d,e =0,...N, k <[, k, 1l =1,...,N.
We remark thatjm, mj, jb, mb, ji, mi andbi are single, unbreakable symbols, and are
not products. In the course of the derivation we find it useful to sort these coefficients into
several subsets, as follows:

e coefficientSjup de, Map.des jMap.ge ANAMj4p 4. iNVOlving four different indices; if we
write these four indices as < b < ¢ < d the coefficients are

jub,cd Map,cd jmab,cd mjab,cd
jac,bd Mac,bd jmac,bd mjac.hd
jad,bc Mad be jmad,bc mjad,bc (AZ)

o coefficientSjup. dey Mab.dey jMab.de @NAmjgp 4. iNVOlVing three different indices; if we
write the three indices as < b < ¢ these coefficients are

jub,ac Map.ac jmab,ac mjab,ac
jab,bc Map, be jmab,bc mjah,bc
juc,bc Mgc,be jmuc,bc mjac,bc (A3)

e coefficientsjm,, involving two different indices
jmub (A4)

e coefficients jb,,; and mb,,; with two different indicesa < » and a third index
iela,a+1,b,b+1}

jbah,i mbab,i (AS)

e coefficients jb,, ; and mb,; ; with two different indicesa < b and a third index
jé¢fa,a+1b,b+1}

Jbab.j Mmbgp, j (A.6)
e coefficientsh, ; with two different indicesk </

b (A7)
e coefficientsji,, andmi,, with two different indicesa < b

jiab Miab (A8)
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o coefficientsbi; with a single index
bi;. (A.9)
The Lie brackets of the extended CK algebrg,(N + 1) andu, (N + 1) read

[Jabv Jac] = WapIoe + Jab.ac & [Mab, Muc] = WapJpe + Map,ac &

[Jabv ch] = _Jac - jab,bcE [Maba Mbc] = Jac + ”lab,bcE

[Jac’ ch] = wbc‘]ab + jac.bc & [Muca Mbc] = wchab + Mac be &

[Jabs Jae] = jab.de & [(Map, Mye] = map e E

[Jabv Mac] = a)abeL' + jmab,ucE [Mub’ Juc] = _wabec - mjab,ucE

[Jab» th] = _Mac - jmah,bcE [Maha ch] = _Mac - mjab,bcE

[]acs Mbc] = _wbcMab - j’/nac,bcE [Mau ch] = wbcMab + mjac,bcE

[Jab’ Mde] = jmab,de & [Maha Jde] - mjah,de & (Alo)
[Jab’ Ba] = —Mab — jbab,aE

[Jab, Bav1] = Map + jbap.ar1E

[Jaa+1, Bara]l = 2Mu a1+ 2jbaat1.a+1E
[Jab, Bp] = Map + jbap,p E

[Jabs Bpy1] = —Map — jbap p+1E

[Jab, Bj] = jbab ;E

[(Map, Ba]l = Jap + mbap 4

[Mah’ Ba+l] = —Jab — mbah,a+1 b > a—+ 2

[Manrl» Ba+l] = _2Ja a+l — 2’/”ba a+1,a+lE

[Map, By] = —Jap — mbyp » E b>a+?2

[(Map, Byya] = Jup + mbap 11 E

[Mabv B]] = mbab,j & (All)

b

[Jab, Ma;,] = —2(1),1}] Z BS + jma;,E [Bk, Bl] = kaE (A12)
s=a+1

[Jap, I] = jiap E [Map, 1] = mip B [Bi, 1] = bi)E (A.13)

where, as indicated before, the relatiens: b <c,a <d,d <e, j ¢ {a,a+ 1, b, b+ 1},
k < I for the indicesa, b,c,d,e = 0,...,N, j,k,l =1,...,N anda,b,d, e are all
different, will be assumed without saying.

Our strategy here will be to enforce the complete set of Jacobi identities, first for
su,(N + 1) and then font,,(N + 1), in a carefully selected order which actually allows one
to explicitly solve the rather large set of linear equations. The first stage will be to identify
many extension coefficients which are forced to vanish; the remaining Jacobi equations
will drastically simplified and will either produce relations allowing one to express certain
derived extension coefficients in terms of the so-calleakic ones, or further relations to
be satisfied by the basic extension coefficients.

To begin with, we show thall coefficients in (A.2) vanish. Denoting 4y, Y, Z} the
Jacobi identity for the generatods, Y, andZ, we display several choices for them and the
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equations ensuing from these choices:

{Jab> Mca, Ba}: Jab,ea =0

{Jab, Mcq, By} Map.ca = 0

{Jabs Jeas Bal: JMapea =0

{Jab, Jeas Bp}: Mjap.ca = 0 (A.14)
{Jaas Mpc, Bc}: Jad,pe =0

{Moa, Joe, Be}: Mad pe = 0

{Jads Jbes Bel: JMadpe =0

{Mua, My, B.}: Mjad pe = 0 (A.15)
{Jab> Joes Jpa}: Wpe Jab,ed + Jac.bd — Jad.be = 0

{Jabs Mpe, Mpa}: Wpe Jab,ed + Mac,bd — Mad,pe =0

{Jabs Jbe, Mpa}: Wpe jMap.cd + jMac.bd — Mjad,be =0

{Jabs My, Jpa}: Wpe jMab,cd — Mjac,bd + jMad,pe = 0. (A.16)

By substituting (A.14) and (A.15) into (A.16), we find thall coefficients in (A.2) are
necessarily equal to zero. From now on, substitution of the already known information into
further equations will be automatically assumed.

The coefficients in (A.6) turn out also to be equal to zero:

{Muy, By, Bj}:  jbap ;=0 {Jabs By, Bj}: mbgp ; =0 jé¢la,a+1b,b+1}.

(A.17)
Now we look for equations involving the coefficiertig; in (A.7). We find:
{Jaa+1a Maa+1a Bk}: waa+1bk,a+1 =0 1<k<a a=1...,N-1
{Jo—16, Mp_1p, B} wp-1pbp; =0 b+1<ILKN b=1..,N-1
(A.18)

so theN(N — 1)/2 coefficients of the typé,; might be different from zero. We denote
them as

Bri = by (A.19)
and from (A.18) they must fulfil two additional conditions
P =0 1B = 0. (A.20)

We now look for Jacobi identities involving the extension coefficients in (A.5):

{Mup, Bas Bay1}: Jbaba+1 = jbab.a
{Map, Ba, Bp}: Jbabp = jbab.a
{Map, By, Byial): Jbabb+1 = jbab.a
{Mup, Bay1, Bp): Jbab.a+1 = Jjbab.p
{Map, Bat1, Bpia}: Jbab.a+1 = jbabp+1

{Mgp, By, Bpi1}: Jbaby = jbapps1
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{Jabs Ba, Bay1}:
{Japs Bas By}
{Jab» Bas Bpy1}:
{Jab, Ba+1, B}:
{Jab> Bat1, Bpyal):
{Javs By, Byy1): (A.21)
which hold no matter whether eithér=a + 1 or b # a + 1. These equations show that

mbab,qul = mbab,a
mbah,h - mbab,a
Mbap p+1 = Mbap,q
mbap,ar1 = Mmbap p
Mbapa+1 = Mbap,p+1

mbypp = Mbap py1

Jbab.a = jbabar1 = jbapp = jbappi1
(A.22)

and, therefore, these coefficients only depend on the first pair of indices. These common
values must be considered as another sdtasic coefficients

Tab = jbap,i Nab = Mbyp; iefa,a+1b,b+1). (A.23)

Now we consider Jacobi identities leading to equations which involve the coefficients in
(A.3), thoS€jup.des Mab.der JMab.de @NAMJ4p 4. With threedifferent indices. This is the most
tedious part of the process, due to the need to pay minute attention to the index ranges. Let
us first look for equations involving the coefficients with indide$, bc}, which appear in
the middle line of (A.3)

mbyp.a = Mbapay1 = Mbapp = Mbap py1

{Jab» Mpe, Beya): Jab.be = Nac c<N

{Jab, Mpn, By} Jab.bN = NaN b<N-1

{Jan—1, Mn_1n, Ba}: MaN—1LN-IN = TaN a>0

{Jov—1, My_1n, B1}: MON—1,N—1N = TJoN

{Map, Jpe, Beya}: Mab.be = Nac c<N

{Map, Jon, By} Mab bN = NaN b<N-1

{Mun-1, In-1n, Ba}: JaN-1N-1IN = TaN a>0

{Mon-1, Jn—1n, B1}: JON-1.N-1IN = NoN (A.24)

{Jabs Jbes Besa}: JMabpe = Tac c<N

{Jab» Jon, BN} JMabbN = TaN b<N-1

{Jan—-1, In—1v, Ba}: MJaN-1,N-IN = TaN a>0

{Jov—1, Jn—1n, Bi}: mjon-1,N-1N = ToN

{Map, Mpc, Beir}: Mjab.be = Tac c<N

{Mup, My, By} Mjab,bN = TaN b<N-1

{Mun-1, My_1n, B.}: JMaN-1LN-IN = TaN a>0

{Moy—1, My_1n, B1}): JMoN—-1.N-1N = Ton (A.25)
so in all cases, and no matter on the value of the middle iddexe have

Jab.be = Map,bc = Tac JMapbe = Mjabpe = Tac- (A.26)

For the coefficients in the first line of (A.3) we obtain that

{Jabs Macv Bc+l}: jab,ac = WabNbc c<N
{Jabs My, By} Jab,an = @apNpN b<N-1
{Jan—1, Myn, By-1}: Mg N-1,aN = QaN-11N—1N a<N-=-2
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(A.27)

(A.28)

(A.29)

(A.30)

Quasi-unitary Lie algebras

{Map, Jac> Beya): Map.ac = DabNbe c<N

{Mup, Jan, Bn}: MapaN = WapNbN b<N-1

{Myn-1, Jun, By-1}: JaN—1aN = Wa N—11N-1IN a<N-2

{Jv_2n-1, My 2N, By-1}:
JN-2N-1N-2N + ON-_2N-1N-1N — 2my_2N-1N-2N = 0

{My_2n-1, In-—2n, Bn-1}:
—2jN-2N-1N-2N + ON-2N-1N-1N +Mmy-_2n-1N-28 =0

{Jabs Jacs Beya}: JMab.ac = OapThe c<N

{Jabs Jan> BN} JMabaN = @WapToN b<N-1

{Jan-1, Jan, Bn—1}: MjaN-1aN = @aN-1TN-1N a<N-2

{Mup, My, Beyal: MJab,ac = OabThe c<N

{Mup, Mun, By} Mjab,aN = WabThN b<N-1

{Myn-1, Mun, By-1}: JMaN-1,aN = @aN-1TN-1N a<N-2

{In—2n-1, IN—2n, By-1}:
JMN_2N-1N-2N + ©ON_2N-1TN_1N + 2mjy_2n-1n-—2n =0

{My_2n-1, My_2N, By-1}:
—2jmy_2n-1N-2N +ON_2N-1TN-1N — MjN-2N-1N-2N = 0.

These equations are summarized in
Jab.ac = Map.ac = OapMpe JMab.ac = Mjabac = WabThe

so again these are derived extension coefficients, expressible in tempsanfd ..

For the coefficients in the third line of (A.3) with indicgsac, bc} we get

{Jacs M, Ba}: Mac e = Whelab a>0
{Joc, Mpe, B1}: Moc,be = Wpelop b>1
{Joc, M1, Bo}: Joe,1c = @1cNo1 c>2
{Mauc, Joe, Ba}: Jac.be = WpeNab a>0
{Moc, Joe, Bi}: Joc,be = @peNob b>1
{Moc, Jic, Ba}: Moe,1c = W1cMo1 c>2
{Jo2, M12, Ba}: — 2jo212 + w12no1 + moz12 =0
{Moz, J12, B2}: 2moz.12 — w1201 — Joz12 =0
{Jac> Jbes Bal: Mjac,be = WpeTab a>0
{Joc, Jbes Bal: M joc,be = WpcTob b>1
{Joc, J1c, B2} Jmoe,1c = W1:To1 c>2
{Mac, My, Bu}: JMac.be = WpeTab a>0
{Moc, My, B1}: JMoc.be = @pcTop b>1
{Moc, My, Ba}: mjoc,1c = @1cTo1 c>2
{Joz, J12, Ba}: 2jmoz12 — w12T01 — Mjoz12 =0
{Mo2, M1z, Ba}: — jmoz12 — w1271 + 2mjoz 12 = 0.

(A.31)
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These equations lead to

jac,hc = Mgc,be = WbcNab jmac,hc = mjac,hc = WpeTab (A32)

so these coefficients are also derived.
Finally, we look for equations involving the coefficients in (A.4), thafis,.. Whenever
there exists an indek betweena andc, the choice

{Jaba Jan Mbc}: jmac = wbc‘jmab + a)abjmbc (A33)

leads to an expression fgin,. in terms of jm,, and jm,.. By iterating while possible,
we find that the coefficientgm,. with a andc not contiguous can be written in terms of
Jjmg, With a andb contiguous. These must be considered as basic ones

ay = jmkflk k= 1, ey N (A34)

and the remaining coefficients in (A.4) are given, recalling that= 1, by

b
JMap = Z Wq 5—1Wsp s b>a+2. (A35)
s=a+1

As far assu,(N + 1) is concerned, the final step in this process is to ascertain that
there is no relation for the extension coefficients further to the ones yet considered. It can
be checked thaall remaining Jacobi equations involving the generatfys M,, and B,
are identically satisfied, so the process has indeed terminated.

Now we deal with that,, (N + 1) case; as Jacobi equations involvidg, M,, and B,
have already been considered, we must take into account only the extra gehematbthe
associated extension coefficients. For these, successively we obtain

{Jaba By, ]}: mia;, =0
{Map, By, 1}: Jiap =0
{ T, Mg—1x, I}: wrbiy =0 (A36)

so the extension coefficients in (A.8) are equal to zero, and those in (A.9) are basic, to be
denoted as

Yk = biy (A37)
and must satisfy

Again in this case, it is easy to check that all remaining Jacobi equations involving the
generator/ are satisfied and do not lead to any further relation.
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